
CS1073 Assignment #7 - Fall 2020

Submission Deadline: Friday, October 30th before 12:00
NOON (Atlantic Daylight Time Zone) in the Assignment 7
dropbox in Desire2Learn. (Read the submission instructions
at the end of this document carefully).

The purpose of this assignment is to review/gain practice with:

• decision statements,
• the while loop,
• the Math class,
• and arithmetic in Java.

This assignment is to be done individually. If you have questions, direct them to a
tutor/assistant during a help session in the "Faculty of Computer Science Student
Success Centre" team or to your course instructor.

1. Fencing App:

Suppose you are writing software for a fencing company that designs fenced
corrals in two different configurations: rectangles, and regular polygons. A
regular polygon has all sides of equal length. They’re interested in knowing how
much each configuration costs and the area of land it encloses. Their fences
are all built to a standard height, so they know the unit cost is $9.50/m of fencing.

a) Begin by writing two classes: RectangularCorral (to represent a
rectangular fenced corral), and PolygonalCorral (to represent a fenced
corral in the shape of a regular polygon).

Continued on next page…

For each RectanglularCorral, we must record its length and width. (Note:
The length and width will both be positive numbers. You may assume that
valid data will be provided when the object is constructed; you do not
need to insert checks here to validate the data.) We also know that the
unit cost of the fencing is $9.50/m; this is a fixed value (it will never
change). Include 2 instance variables, a constant, and an appropriate
constructor method. You should also have an accessor method to retrieve
the length, another to retrieve the width, and one to retrieve the unit cost.
In addition, include 2 more methods: one to calculate and return the cost
of the fencing, and another to calculate and return the area of land the
corral encloses.

For each PolygonalCorral, we must record the length of the side and the
number of sides the enclosure will have. (Note: Every PolygonalCorral will
have a minimum of 3 sides, and the length of each side will be a positive
number. You may assume that valid data will be provided when the
object is constructed; you do not need to insert checks here to validate
the data.) We also know that the unit cost of fencing is $9.50/m; this is a
fixed value (it will never change). Include 2 instance variables, a constant,
and an appropriate constructor method. You should also have an
accessor method to retrieve the side length, another to retrieve the
number of sides, and one to retrieve the unit cost. In addition, include 2
more methods: one to calculate and return the cost of the fencing, and
another to calculate and return the area of land the corral encloses.

Note: To calculate the area of a regular polygon requires the use of
trigonometric functions. Use radians in your calculations and the value of
𝜋 that is defined in the Math class.

Write Javadoc comments for your RectanglularCorral and
PolygonalCorral classes. Include a comment for each class, for each
instance variable, each constant and each method. Use @author,
@param & @return tags where appropriate. Run the Javadoc utility on
your files and view the resulting RectanglularCorral.html and
PolygonalCorral.html files in a browser to make sure that your Javadoc
comments were inserted/formatted correctly. (Be sure to include author
and private information when generating the documentation with
Javadoc.)

Question 1 part b) begins on the next page…

b) Next, write a driver program that reads in the dimensions in metres, and/or
number of sides for different fence configurations and displays the cost
and area of each. After reading in the information for all the corrals, the
program should indicate whether the corral with the largest area is a
rectangle or a regular polygon, followed by its area. NOTE: each area
should be displayed with exactly 3 digits to the right of the decimal, and
each cost should be displayed as a currency.

Begin by presenting the user with a list of options, and keep looping until
the user indicates that they would like to quit. You may assume that the
user will provide valid input; you do not need to provide checks to
validate the input. Below & continued on the next page is sample output
to show you how your program should work (note: user input is shown
here in green and italics):

	 What	would	you	like	to	do?	
1	-	Get	info	for	rectangular	enclosure	
2	-	Get	info	for	polygon	enclosure	
3	-	Quit	
Enter	your	choice:	2	
Length	(in	m):	5.7	
Number	of	sides:	6	
The	area	is:	84.411	square	metres.	
The	cost	is:	$324.90	
	
What	would	you	like	to	do?	
1	-	Get	info	for	rectangular	enclosure	
2	-	Get	info	for	polygon	enclosure	
3	-	Quit	
Enter	your	choice:	1	
Width	(in	m):	8.3	
Length	(in	m):	10.0	
The	area	is:	83.000	square	metres.	
The	cost	is:	$347.70	
	
What	would	you	like	to	do?	
1	-	Get	info	for	rectangular	enclosure	
2	-	Get	info	for	polygon	enclosure	
3	-	Quit	
Enter	your	choice:	2	
Length	(in	m):	6.75	
Number	of	sides:	8	
The	area	is:	219.995	square	metres.	
The	cost	is:	$513.00	
What	would	you	like	to	do?	

1	-	Get	info	for	rectangular	enclosure	
2	-	Get	info	for	polygon	enclosure	
3	-	Quit	
Enter	your	choice:	1	
Width	(in	m):	4.6	
Length	(in	m):	3.25	
The	area	is:	14.950	square	metres.	
The	cost	is:	$149.15	
	
What	would	you	like	to	do?	
1	-	Get	info	for	rectangular	enclosure	
2	-	Get	info	for	polygon	enclosure	
3	-	Quit	
Enter	your	choice:	1	
Width	(in	m):	12.0	
Length	(in	m):	0.75	
The	area	is:	9.000	square	metres.	
The	cost	is:	$242.25	
	
What	would	you	like	to	do?	
1	-	Get	info	for	rectangular	enclosure	
2	-	Get	info	for	polygon	enclosure	
3	-	Quit	
Enter	your	choice:	3	
The	corral	with	the	largest	area	is	a	polygon.	
Its	area	is:	219.995	square	metres.	
	

After you have tested your application (with several different input values)
and you’re sure that it works properly, save sample output for submission.
Include at least 3 corrals and at least 1 of each of the different
configurations (rectangular and regular polygon) in the sample output
you submit.

For this question, take a snapshot of the terminal window to include in
your .zip file. That way, the marker will be able to see the input values as
well. Since the output may be rather long, you may need multiple screen
captures to get it all. For your assignment report, you may copy and
paste the output from the terminal window into your report (again, this will
ensure that the input values are also included.)

Remember that you should include a Javadoc comment at the top of
your driver class for part 1. This comment should include a one-line
description of the class and @author information.

2. Arabic to Ancient Egyptian Number System

Ancient Egyptian civilizations used hieroglyphs to represent their number system.
The following table shows the Arabic equivalent to the Egyptian hieroglyph:

Symbol
Description

Keyboard
Symbol Hieroglyph Value

Egyptian god W 1000000

Frog & 100000

Bent Finger)

10000

Lotus Flower *

1000

Coil of Rope @

100

Heel Bone n 10

Staff | 1

Source: http://mathstat.slu.edu/escher/index.php/History_and_Numbers

When given a hieroglyph, the value of each symbol is added up to indicate the
Arabic value.
When there are multiples of the same hieroglyph, then they are positioned
according to the following pattern:

 || ||| ||| |||| |||
 |||

The hieroglyphs are drawn starting with the largest place value, and each
smaller place value written below. Your program should print the pattern of the
hieroglyphs using loops and/or conditional statements – do not “hard-code” the
print out for each pattern 1-9. (Hint: use the pattern that numbers 1,2,3,5,6,9
allow up to 3 symbols on each line, and 4,7,8 allow up to 4 symbols on each
line.)

Write a program that prompts the user for a number between 1 and 9999999
(inclusive) and then prints out the number in Egyptian hieroglyphs.

Continued on next page…

Sample Output (note: user input is shown in green and italics):

Please	enter	a	number	between	1	and	9999999:		45206	
	
45206	in	Egyptian	hieroglyphs	is:	
))))	
*	*	*	
*	*		
@	@	
|	|	|	
|	|	|	

If the user enters a number outside of the acceptable range (i.e. less than 1 or
greater than 9999999), your program should not try to convert it to hieroglyphs.
Instead, it should print out a message and prompt the user for a new input value.
For example:

Invalid	input.		You	must	enter	a	number	between	1	and	9999999.	
	
Please	enter	another	number	now:	

Do this repeatedly until a valid input value is provided.

After you have tested your application (with several different in put values) and
you’re sure that it works properly, save sample output from running the program
3 times (3 different test cases). Include both valid input and invalid input. For
this question, take a snapshot of the terminal window to include in your .zip file.
That way, the marker will be able to see the input values as well. For your
assignment report, you may copy and paste the output from the terminal
window into your report (again, this will ensure that the input values are also
included.)

Submission instructions are on the next page…

Your electronic assignment submission (submitted via Desire2Learn) will
consist of two files:

i. a written report. This should begin with a title page; just as we described
in Assignment #1, your title page should include: the course (CS 1073),
your section (FR01A, FR02A, FR03A or FR04A), the assignment number, your
full name, and your UNB student number. That should be followed by four
sections, with each part clearly identified with a section heading. Include:

a. the source code for Part 1,
b. the sample output for Part 1,
c. the source code for Part 2, and
d. the sample output for Part 2.

(Aside: Your source code should contain all of the Javadoc comments
mentioned above. However, you do not need to include the .html files.)

This written report should be prepared using a word processor; we
recommend using Microsoft Word (i.e. create a .docx file for your report).
Copy & paste your java source code & required output into the report
document. Add appropriate headings for each part. Fix up the
formatting where necessary, adjusting line breaks & page breaks to
ensure that your document is easy to read. Use a monospaced font for
your code to maintain proper indentation.) Once the report is complete
and you've checked it all over, save the .docx file for your own records,
and then save a second copy in pdf format for submission. (Note: Be sure
to open that file in a pdf viewer to verify that the pdf was generated
correctly.) The SINGLE pdf file containing your report will be submitted to
the appropriate assignment drop box on Desire2Learn. (It is important
that you submit a pdf file and NOT the original Word document. This pdf
will allow the marker to write comments directly on your work to give you
better feedback.)

Note: Please name this report as follows: YourName_As7_Report.pdf

ii. an archive file (.zip) that contains your Java source code and output for
this assignment. Make sure that your archive includes all .java files (in
case the marker wishes to compile & run your code to test it). You should
not include the report document or the .class files in your archive. This
archive should be submitted as a single file to the appropriate drop box
on Desire2Learn.

Note: Please name this archive file as follows:
YourName_As7_Archive.zip

