
CS1083 Assignment #11 – Winter 2021

Due: MONDAY, April 12th before 4:00pm (Atlantic),
submitted in the Assignment 11 dropbox in Desire2Learn.
(Read the submission instructions at the end of this
document carefully).

The purpose of this assignment is to provide you with practice with binary search
trees.

This assignment is to be done individually. If you have questions, direct them to a
tutor/assistant during a help session in the "Faculty of Computer Science Student
Success Centre" team or to your course instructor.

Name Counts

For this assignment you will be counting names. The number of occurrences of
each name appearing in a class list is stored in a binary search tree where each
pair is the name and its count. For the list of names:

Elizabeth Anne Flynn
Sarah Blair
Abe Corey
Blair Elliot
COREY FLYNN
anne blair

The following name and count pairs would be:

(abe, 1)
(anne, 2)
(blair, 3)
(corey, 2)
(elizabeth, 1)
(elliot, 1)
(flynn, 2)
(sarah, 1)

You will be generating the pairs by reading a list of names from a text file. Before
starting the assignment, draw the binary search tree that is generated by
reading in the above names, where the tree is ordered alphabetically by name.

Write a class called NameCountTree.java that contains a definition for a binary
search tree of Strings. The class must contain two inner class, Pair and Node.

The Pair inner class is used to store the String value and count and must override
the toString method to print out the name, count pair in the format: (sarah, 1)

The Node inner class holds information for a single node in the tree (a node has
a String value and a count, stored in an instance of the Pair inner class, and
references to the left and right children).

Along with a constructor, your implementation of the NameCountTree must also
contain the following 5 methods:

• add(String valueIn): public method that calls the recursive add method.
• add(String valueIn, Node root): private recursive method that

increments the count of String valueIn by 1, or adds the String valueIn to
the tree with a count of 1.

• readText(String filename): Reads a text file, parses each String, and
counts all the names (using the lower case spelling of the name) by
adding them to a binary search tree of String/count pairs (make use of
the add method).

• print(): public method that calls the recursive print method.
• print(Node root): private recursive method that prints the nodes of the

tree in alphabetical order.
• printMin(): prints the String/count pair of the name with the

alphabetically lowest value (ie: (abe, 1)for the example above).

Note that String/count pairs can be printed by making use of the Pair class’s
toString() method. A driver NameCountDriver.java file has been provided for you
in D2L, which reads a text file, and prints the name counts in order and then
prints the minimum entry in the tree.

Test your program by creating a test case called test1.in containing the names:

Elizabeth Anne Flynn
Sarah Blair
Abe Corey
Blair Elliot
COREY FLYNN
anne blair

Create two other test case that you make up.

Code must be appropriately commented (including Javadoc comments).

For this assignment, only an electronic submission is required.
Your electronic submission (submitted via Desire2Learn) will consist of two files:

i. a written report. This should begin with a title page that includes: the
course (CS 1083), your section (FR01B, FR02B, FR03B), the assignment
number, your full name, and your UNB student number. That should be
followed by two sections, with each part clearly identified with a section
heading. Include:

• a single pdf file containing a listing of the source code for the
NameCountTree class, the 3 input files, and the output of the driver
for the 3 test cases captured from the terminal window.

This written report should be prepared using a word processor; we
recommend using Microsoft Word (i.e. create a .docx file for your report).
Copy & paste your java source code and the contents of the input files,
and insert images of your terminal window containing the output into the
report document. Add appropriate headings for each part. Fix up the
formatting where necessary, adjusting line breaks & page breaks to
ensure that your document is easy to read. Use a monospaced font for
your code to maintain proper indentation.) Once the report is complete
and you've checked it all over, save the .docx file for your own records,
and then save a second copy in pdf format for submission. (Note: Be sure
to open that file in a pdf viewer to verify that the pdf was generated
correctly.) The SINGLE pdf file containing your report will be submitted to
the appropriate assignment drop box on Desire2Learn. (It is important that
you submit a pdf file and NOT the original Word document. This pdf will
allow the marker to write comments directly on your work to give you
better feedback.)

Note: Please name this report as follows: YourName_A11_Report.pdf

ii. an archive file (.zip) that contains all your work for this assignment. Make
sure that your archive includes all source code (all .java files and test case
files in case the marker wishes to compile & run your code). This archive
should be submitted as a single file to the appropriate drop box on
Desire2Learn. Note: Please name this archive file as follows:
YourName_A11_Archive.zip

	Due: MONDAY, April 12th before 4:00pm (Atlantic), submitted in the Assignment 11 dropbox in Desire2Learn. (Read the submission instructions at the end of this document carefully).
	Name Counts
	For this assignment, only an electronic submission is required.

