
CS1083 Assignment #3 - Winter 2021

Due: Friday, February 5th before 4:00pm (Atlantic), submitted
in the Assignment 3 dropbox in Desire2Learn. (Read the
submission instructions at the end of this document
carefully).

The purpose of this assignment is to provide you with practice with polymorphism

This assignment is to be done individually. If you have questions, direct them to a
tutor/assistant during a help session in the "Faculty of Computer Science Student
Success Centre" team or to your course instructor.

1. Inheritance and Polymorphism:

Use the given classes (Shape, EquilTriangle, Circle, Square) and the driver
program Test1:
A. Run the program using the given “hard-coded” data. What is the result of

using the equals() method of the base Object class? How is it determining
equality? Report the results.

B. Write an equals() method for EquilTriangle, Circle and Square that determines
equal based on the shape’s area (What class should it go in?). Run the Test1
program again and report the results.

C. Create a Test2 driver class to hold the following shapes in an array, compare
each shape against the others (only once) using your equals() method and
report the results.

new Circle(2);
new Circle(2);
new Circle(3);
new Square(Math.PI);
new EquilTriangle(2);

2. Interfaces and Polymorphism:

A. Implement the Comparable interface for the various shapes where the
compareTo() method uses the value of perimeter/area as the basis for
comparison. Implement in Find.java the following methods using one of the
following two ways to handle generic types:

1. As in the textbook (see the Sorting class in Chapter 10): public class
Find<T>; This means the methods will take Comparable<T> arrays and array
elements may need to be cast to T (see examples in Chapter 10). Note: this
approach will generate a warning about “unchecked or unsafe operations”
when you compile Find.java, which can be ignored.

• public Comparable getLargest(Comparable<T>[] a);
Returns the largest object in the array

• public boolean isPresent(Comparable<T>[] a, T key);
 Returns whether a given object (key) is present in the array (using
compareTo())

• public int presentNTimes(Comparable<T>[] a, T key);
 A count of the number of occurrences of a given object (key) in the
array (using compareTo()).

• public boolean isSorted(Comparable<T>[] a);
Returns whether the array is sorted in ascending order

2. public class Find<T extends Comparable<T>>; this means the methods will
take arrays with elements of type T, there’s no need to cast the argument,
and the compiler will generate no warning.

• public T getLargest(T[] a);
Returns the largest object in the array

• public boolean isPresent(T[] a, T key);
 Returns whether a given object (key) is present in the array (using
compareTo())

• public int presentNTimes(T[] a, T key);
 A count of the number of occurrences of a given object (key) in the
array (using compareTo()).

• public boolean isSorted(T[] a);

Returns whether the array is sorted in ascending order

Create a driver program Test3 that uses the same objects as in Test2 as well
as the following object to search and count: new Square(4); Note: you
can ignore the warning about “unchecked or unsafe operations” when you
compile Find.java.

B. To illustrate how general the methods in Find.java are, create a Cat class
(instance variables: name and weight) that implements Comparable.
Compare cats based on name first, and if the names are the same, compare
them using weight. Create a driver program Test4 that uses two arrays of 3
cats, one sorted in ascending order and one unsorted, as well as a cat to
search and count, to test the methods in Find.java.

Your electronic submission (submitted via Desire2Learn) will consist of two files:

i. a written report. This should begin with a title page that includes: the
course (CS 1083), your section (FR01B, FR02B, FR03B), the assignment
number, your full name, and your UNB student number. That should be
followed by two sections, with each part clearly identified with a section
heading. Include:

a. The answer to the question in 1A

b. The modified source code for Shape

c. The Test2 driver program

d. The output of Test2

e. Source code for Find

f. The test driver program Test3

g. The output of Test3

h. Source code for Cat

i. The test driver program Test4

j. The output of Test4

This written report should be prepared using a word processor; we
recommend using Microsoft Word (i.e. create a .docx file for your report).
Copy & paste your java source code & required output into the report

document. Add appropriate headings for each part. Fix up the formatting
where necessary, adjusting line breaks & page breaks to ensure that your
document is easy to read. Use a monospaced font for your code to
maintain proper indentation.) Once the report is complete and you've
checked it all over, save the .docx file for your own records, and then
save a second copy in pdf format for submission. (Note: Be sure to open
that file in a pdf viewer to verify that the pdf was generated correctly.)
The SINGLE pdf file containing your report will be submitted to the
appropriate assignment drop box on Desire2Learn. (It is important that you
submit a pdf file and NOT the original Word document. This pdf will allow
the marker to write comments directly on your work to give you better
feedback.)

Note: name this report as follows: YourName_CS1083_As3_Report.pdf

ii. an archive file (.zip) that contains your Java source code and input files
for this assignment. Make sure that your archive includes all .java files (in
case the marker wishes to compile & run your code to test it). You should
not include the report document or the .class files in your archive. This
archive should be submitted as a single file to the appropriate drop box
on Desire2Learn.

Note: name this archive file as follows: YourName_CS1083_As3_Archive.zip

