
CS1083 Assignment #7 – Winter 2021

Due: Friday, March 12th before 4:00pm (Atlantic), submitted in
the Assignment 7 dropbox in Desire2Learn. (Read the submission
instructions at the end of this document carefully).

The purpose of this assignment is to help develop your understanding of recursion.

This assignment is to be done individually. If you have questions, direct them to a
tutor/assistant during a help session in the "Faculty of Computer Science Student
Success Centre" team or to your course instructor.

Note: you will need to download the zip file posted in D2L and modify the files as
directed in the assignment.

Computation of a Recursive Sequence: three solutions

A recursive mathematical sequence is one in which each term is defined using the
previous term. In the sequence 1, 5, 6, 11, 17, … the first two terms are the seed terms,
and each subsequent term is calculated using the sum of the previous 2 terms. More
specifically, if seq(n) is the nth term of the sequence, then the sequence can be
defined mathematically as follows:

 seq(0) = 1
 seq(1) = 5
 seq(n) = seq(n-1) + seq(n-2), n>1

a) Because the sequence is defined recursively, it is natural to write a recursive

method to determine term number n in the sequence. The file Seq.java contains
the skeleton for a class containing a method to compute the numbers in the
sequence. Save this file to your directory. Following the specification above, fill in
the code for method seqR so that it recursively computes and returns term n in the
sequence.

The program TestSeq.java contains a simple driver that asks the user for an
integer and uses the seqR method to compute that element in the sequence.
Save this file to your directory and use it to test your seqR method. Be sure to test
for boundary cases such as the first two terms (0 and 1). Test other values of n such

as 4 (the result should be 17), 10 (the result should be 309) and 45 (the result should
be 2080957287). What do you notice if you try to find the 60th term in the
sequence?
The problem is that the seqR method is making lots and lots of recursive calls. To
see this, add a print statement at the beginning of your seqR method that
indicates what call is being computed, e.g., “In seqR(3)” if the parameter is 3. Now
run TestSeq again and enter 5—you should get a number of messages from your
print statement. Examine these messages and figure out the sequence of calls that
generated them. This is easiest if you first draw the call tree on paper. Since
seqR(5) is seqR(4) + seqR(3), you should not be surprised to find calls to seqR(4) and
seqR(3) in the printout. But why are there two calls to seqR(3)? Because both
seqR(4) and seqR(5) need seqR(3), so they both compute it—very inefficient.

Note: remember to remove the print statement you added to the seqR method,
this was just for demonstration purposes.

b) To improve the time that it takes to recursively compute term n in the sequence is
to use Memoization. Memoization is the process of storing the values in a cache
(memory) as they are calculated and returning the cached result when the same
input occurs. For our cache we will use an ArrayList. Proceed as follows:
i. Add a method seqM to your Seq class. Like seqR, seqM should be static and

should take an integer parameter and return an integer. Add an ArrayList
object as a class variable.

ii. Inside seqM, check if the ArrayList has been initialized (remember, non-initialized
objects will contain a null value by default), if not then you will need to initialize
it to the correct capacity. Since the first two values of the sequence are given
in the definition, we can add the first two values to the ArrayList depending on
the capacity.

iii. Check if the value requested has already been calculated and stored in the
cache (ArrayList). If so then it does not have to be recalculated, if not then the
value will need to be calculated and stored in the appropriate index of the
cache (ArrayList). You may want to review the methods of the ArrayList class
that are listed in the API which can be found online.

iv. Modify your TestSeq class so that it also calls seqM and prints the result. You
should get the same answers.

(Continued on next page)

c) Another way to compute term n in the sequence is to use an iterative approach
and store the values in an array as they are computed. Proceed as follows:
i. Add a method seqI to your Seq class that is static and takes an integer as its

parameter and returns an integer.
ii. Inside seqI, create an array of integers that you will use to store the values of

the sequence. Using a loop, compute each element of the array as the sum of
the two previous elements (except the first two elements which will be assigned
their values) up to the value passed in. When the array is full, its last element is
the element requested. Return this value.

iii. Modify your TestSeq class so that it calls seqR and prints that result, then calls
seqM and prints the result, and lastly calls seqI and prints that result. You should
get all the same answers.

Note: you can always assume that the user will enter a valid input value (ie: non-
negative integer) when testing your methods. You do not have to test for or
handle cases where the user inputs an invalid value.

d) To determine the time that each method takes to execute we can use the
nanoTime() method from the System class and calculate the difference in the time
before and after the method call. Produce a nicely formatted printout of values of
the average execution times by putting all three method calls and the printout of
their execution times inside of a loop. You can use NumberFormat class to keep
values lined up in the tab separated columns.

For testing, use the sample code on the next page in your main method and add
the remaining method calls and time calculations to the body of the for loop.
Include the output in your report.

(Continued on next page)

NumberFormat form = NumberFormat.getInstance();
form.setMaximumFractionDigits(7);
form.setMinimumFractionDigits(7);

System.out.println("Execution Times in Milliseconds (ms)");
System.out.println("Seq(n) \tRecursive \tMemoization \tItertive");

long start, end;
int seqA;
double time;

for(int i = 20; i <= 40; i+=10){

start = System.nanoTime();
seqA = Seq.seqR(i);
end = System.nanoTime();
time = (double)(end-start)/1000000;

System.out.print(i + "\t" + form.format(time));

//add remaining method calls and time calculations

 }

Note: Code must be appropriately commented (including Javadoc comments).

Submission instructions are on the next page…

For this assignment, only an electronic submission is required.

Your electronic submission (submitted via Desire2Learn) will consist of two files:

i. a written report. This should begin with a title page that includes: the course (CS
1083), your section (FR01B, FR02B, FR03B), the assignment number, your full name,
and your UNB student number. That should be followed by two sections, with
each part clearly identified with a section heading. Include:

• the source code for Seq.java and TestSeq.java
• the sample output

This written report should be prepared using a word processor; we recommend
using Microsoft Word (i.e. create a .docx file for your report). Copy & paste your
java source code & required output into the report document. Add appropriate
headings for each part. Fix up the formatting where necessary, adjusting line
breaks & page breaks to ensure that your document is easy to read. Use a
monospaced font for your code to maintain proper indentation.) Once the
report is complete and you've checked it all over, save the .docx file for your
own records, and then save a second copy in pdf format for submission. (Note:
Be sure to open that file in a pdf viewer to verify that the pdf was generated
correctly.) The SINGLE pdf file containing your report will be submitted to the
appropriate assignment drop box on Desire2Learn. (It is important that you
submit a pdf file and NOT the original Word document. This pdf will allow the
marker to write comments directly on your work to give you better feedback.)

Note: name this report as follows: YourName_CS1083_As7_Report.pdf

ii. an archive file (.zip) that contains all your Java source code for this assignment.
Make sure that your archive includes all .java files (in case the marker wishes to
compile & run your code to test it). You should not include the report document
or the .class files in your archive. This archive should be submitted as a single file
to the appropriate drop box on Desire2Learn.

Note: name this archive file as follows: YourName_CS1083_As7_Archive.zip

	Due: Friday, March 12th before 4:00pm (Atlantic), submitted in the Assignment 7 dropbox in Desire2Learn. (Read the submission instructions at the end of this document carefully).
	Computation of a Recursive Sequence: three solutions
	Submission instructions are on the next page…
	For this assignment, only an electronic submission is required.

