
Review Questions: 
1. When storing dates as the date datatype it becomes easier to manipulate that data when retrieving it. 

Data stored as date can use all the functions associated with date. Date can be presented in any date 

format in a query, a character would have to be parsed into a date and then represented as the correct 

date format. It would be worse for everyone, the people who enter data into a database and those who 

query it. 

7. Where V_State = 'TN' OR V_State = 'FL' OR V_State = 'GA' 

9. The first command would produce one line, the count of V_CODE entries in PRODUCT. The distinct 

would not matter here because count only returns one result, the count of V_CODE in PRODUCT. 

The second command would count only the first V_CODE in PROCUT that have that distinct V_CODE. It 

would return a count of the entries in a list of V_CODE with no duplicate V_CODES that were in 

PRODUCT. 

11. WHERE in SQL is a condition that is applied while the query is being executed. It will only return 

results that fit the criteria of the WHERE clause. The HAVING condition by contract only filters the 

results that have been returned after the interaction with the server is finished and is used after the 

results have been grouped. 

Problems: 

9.   
select count(INV_NUMBER) as `Number of Invoices` 

 from INVOICE; 

10.  
select count(CUS_CODE) as `Number of customers who have a balance over 500$` 

 from CUSTOMER 

    where CUS_BALANCE > 500; 

12. 
select CUS_CODE, INV_NUMBER, P_DESCRIPT, LINE_UNIT as `Units bought`, 
LINE_PRICE as `Unit Price`, TRUNCATE(LINE_UNIT * LINE_PRICE, 2) as `Subtotal` 

 from CUSTOMER 

    natural join LINE 

    natural join PRODUCT 

    natural join INVOICE 

    order by CUS_CODE, INV_NUMBER, P_DESCRIPT; 

  



15. 
select CUS_CODE, CUS_BALANCE, SUM(LINE_UNIT * LINE_PRICE) as `Total 

Purchases` , COUNT(LINE_NUMBER) as `Number of Purchases`, 
TRUNCATE(SUM(LINE_UNIT * LINE_PRICE)/COUNT(LINE_NUMBER), 2) as `Average 

Purchase Amount` 

 from CUSTOMER 

    natural join LINE 

    natural join INVOICE 

    group by CUS_CODE 

    order by CUS_CODE; 

23. 
select CUSTOMER.CUS_CODE, CUS_BALANCE 

from 

    CUSTOMER 

left join 

    INVOICE on CUSTOMER.CUS_CODE = INVOICE.CUS_CODE 

where 

    INV_NUMBER is null 

order by CUS_CODE; 

  



27. 
select * 

 from LGDEPARTMENT 

    order by DEPT_NAME; 

28. 
select PROD_SKU, PROD_DESCRIPT, PROD_TYPE, PROD_BASE, PROD_CATEGORY, 
PROD_PRICE 

 from LGPRODUCT 

    where PROD_BASE = 'Water' and PROD_CATEGORY = 'Sealer'; 

32. 
select CUST_FNAME, CUST_LNAME, CUST_STREET, CUST_CITY, CUST_STATE, CUST_ZIP 

 from LGBRAND 

 natural join LGPRODUCT 

 natural join LGINVOICE 

 natural join LGLINE 

 natural join LGCUSTOMER 

where BRAND_NAME = 'FORESTERS BEST' and PROD_CATEGORY = 'Top Coat' and 

INV_DATE between '2017-7-15' and '2017-7-31' 

group by CUST_STATE, CUST_LNAME, CUST_FNAME 

order by CUST_STATE, CUST_LNAME, CUST_FNAME; 


