University of New Brunswick Faculty of Computer Science CS1303: Discrete Structures Homework Assignment 1, **Due Time, Date** 11:59 PM, February 2, 2021

Student Name: ______ Matriculation Number: _____

Instructor: Rongxing Lu The marking scheme is shown in the left margin and [100] constitutes full marks.

- [10] 1. Fill in the blanks to rewrite the given statements below.
 - (a) For every object J, if J is a square then J has four sides.
 - i. All squares ______.
 - ii. Every square ______.
 - iii. If an object is a square, then it _____.
 - iv. If J _____, then J _____.
 - v. For every square J, _____.
 - (b) Every positive number has a positive square root.
 - i. All positive numbers _____
 - ii. For every positive number e, there is ______ for e.
 - iii. For every positive number e, there is a positive number r such that ______

____.

- (c) There is a real number whose product with every number leaves the number unchanged.
 - i. There is a real number r such that the product of r
 - ii. There is a real number r with the property that for every real number s, _____
- [20] 2. Let $A = \{w, x, y, z\}$, and $B = \{a, b\}$. Use the set roster notation to write each of the following sets, and indicate the number of elements that are in each set.
 - (a) $A \times B$.
 - (b) $B \times A$.
 - (c) $A \times A$.
 - (d) $B \times B$.
- [10] 3. Let $S = \{0, 1\}$. List all the strings of length 4 over S that contain three or more 0's.
- [20] 4. Let p, q, and r be the propositions
 - p: You have the flu.
 - q: You miss the final examination.
 - r: You pass the course.

Express each of these propositions as an English sentence.

- (a) $p \rightarrow q$.
- (b) $q \rightarrow \neg r$.
- (c) $p \lor q \lor r$.
- (d) $(p \to \neg r) \lor (q \to \neg r)$.
- (e) $(p \wedge q) \lor (\neg q \wedge r)$.
- [20] 5. Construct a truth table for each of these compound propositions.
 - (a) $p \wedge \neg p$.
 - (b) $p \lor \neg p$.
 - (c) $(p \lor \neg q) \to r$.
 - (d) $(p \lor q) \to (p \land q).$
 - (e) $(p \to q) \to (q \to p).$
- [20] 6. Use the Laws of Equivalence to prove the following logical equivalences. State clearly which law(s) you are using in each step.
 - (a) $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q.$
 - (b) $(p \wedge q) \rightarrow (p \lor q) \equiv \mathbf{t}.$
 - (c) $p \to (q \lor r) \equiv (p \land \neg q) \to r$.
 - (d) $p \to (q \to r) \equiv (p \land q) \to r$.

Solutions.

[10]	1. Fill in the blanks to rewrite the given statements below.
	(a) For every object J, if J is a square then J has four sides.
	i. All squares \checkmark have four sides.
	ii. Every square \checkmark has four sides.
	iii. If an object is a square, then it \checkmark has four sides.
	 iv. If J, then J √ is a square, has four sides. v. For every square J,
	\sqrt{J} has four sides.
	(b) Every positive number has a positive square root.
	i. All positive numbers \checkmark have a positive square root.
	 ii. For every positive number e, there is for e. ✓ a square root
	iii. For every positive number e, there is a positive number r such that $\checkmark r = \sqrt{e}$
	(c) There is a real number whose product with every number leaves the number unchanged.
	 i. There is a real number r such that the product of r ✓ with every number leaves the number unchanged.
	ii. There is a real number r with the property that for every real number s, $\checkmark r \times s = s$
[20]	2. Let $A = \{w, x, y, z\}$, and $B = \{a, b\}$. Use the set roster notation to write each of the following sets,

[2 and indicate the number of elements that are in each set.

(a)
$$A \times B$$
.
 \checkmark
 $A \times B = \{(w, a), (w, b), (x, a), (x, b), (y, a), (y, b), (z, a), (z, b)\}$
 $A \times B$ has $4 \cdot 2 = 8$ elements.

(b) $B \times A$. \checkmark

 $B \times A = \{(a,w), (a,x), (a,y), (a,z), (b,w), (b,x), (b,y), (b,z)\}$ $B \times A$ has $2 \cdot 4 = 8$ elements.

$$B \times B = \{(a, a), (a, b), (b, a), (b, b)\}$$

$$B \times B \text{ has } 2 \cdot 2 = 4 \text{ elements.}$$

[10] 3. Let $S = \{0, 1\}$. List all the strings of length 4 over S that contain three or more 0's. \checkmark

1000,0100,0010,0001,0000

[20] 4. Let p, q, and r be the propositions

p: You have the flu.

- q: You miss the final examination.
- r: You pass the course.

Express each of these propositions as an English sentence.

(a) $p \rightarrow q$.

 \checkmark If you have the flu, then you miss the final examination.

(b) $q \rightarrow \neg r$.

 \checkmark If you miss the final examination, then you do not pass the course.

(c) $p \lor q \lor r$.

 \checkmark You have the flu or you miss the final examination or you pass the course.

(d) $(p \to \neg r) \lor (q \to \neg r)$.

 \checkmark If you have the flu, then you do not pass the course; or if you miss the final examination, then you do not pass the course.

(e) $(p \wedge q) \vee (\neg q \wedge r)$.

 \checkmark You have the flu and you miss the final examination, or you do not miss the final examination and you pass the course.

[20] 5. Construct a truth table for each of these compound propositions.

(a) $p \wedge \neg p$.

	1	
p	$\neg p$	$p \wedge \neg p$
Т	F	F
F	Т	F

(b)	$p \lor \cdot$	$\neg p$.						
	p	$p \mid \neg p \mid p \lor \neg p$			p			
	Т	F	Т					
	F	Т		Т				
(c)	$(p \lor \neg q) \to r.$							
	p	q	r	$\neg q$	$p \lor -$	$\neg q$	$(p \lor \neg q) \to r$	
	Т	Т	Т	F	T		Т	
	Т	F	Т	Т	T		Т	
	F	Т	Т	F	F		Т	
	F	F	Т	Т	Т		Т	
	Т	Т	F	F	T		F	
	Т	F	F	Т	T		F	
	F	Т	F	F	F		Т	
	F	F	F	Т	T		F	
(d)	$(p \lor$	q) -	$\rightarrow (p$	$p \wedge q$).			
	p	q	$p \lor$	q	$p \wedge q$	(p	$p \lor q) \to (p \land q)$	
	Т	Т	T		Т		Т	
	F	Т	Т		F		F	
	Т	F	Т		F		F	
	F	F	F		F		Т	
(e)	(p –	$\rightarrow q)$	\rightarrow ($(q \rightarrow$	$\cdot p).$			r
	p	q	<i>p</i> -	$\rightarrow q$	$q \rightarrow p$		$(p \to q) \to (q \to$	p)
	Т	Т	Т		Т		Т	
	F	Т	Т		F		F	
	Т	F	F		Т		Т	
	F	F	Т		Т		Т	

[20] 6. Use the Laws of Equivalence to prove the following logical equivalences. State clearly which law(s) you are using in each step.

(a)
$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$
.
 $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$ by De Morgan's laws
 $\equiv \neg p \land (\neg (\neg p) \lor \neg q)$ by De Morgan's laws
 $\equiv \neg p \land (p \lor \neg q)$ by Double negation laws
 $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$ by Distributive laws
 $\equiv c \lor (\neg p \land \neg q)$ by Negation laws
 $\equiv \neg p \land \neg q$ by Identity laws
(b) $(p \land q) \rightarrow (p \lor q) \equiv \mathbf{t}$.