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1. Transform each of the following by making the change of variable j = i− 1.[5]

(a)
n+1∑
i=1

(i− 1)2

i · n

(b)
n∑

i=3

i

i+ n− 1

2. Write each of following as a single summation or product.[5]

(a)

3 ·
n∑

k=1

(2k − 3) +
n∑

k=1

(4− 5k)

(b) (
n∏

k=1

k

k + 1

)
·

(
n∏

k=1

k + 1

k + 2

)

3. Compute each of the following. Assume the values of the variables are restricted so that the expressions[10]
are defined.

(a)
4!

3!

(b)
3!

0!

(c)
(n− 1)!

(n+ 1)!

(d)
n!

(n− k + 1)!



4. Prove each of the following statements using mathematical induction.[28]

(a) For every integer n ≥ 1,

1 + 6 + 11 + 16 + · · ·+ (5n− 4) =
n(5n− 3)

2
.

(b) For every integer n ≥ 3,

43 + 44 + 45 + · · ·+ 4n =
4(4n − 16)

3
.

(c) For every integer n ≥ 1,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

(d) For every integer n ≥ 1,
n∑

i=1

i(i!) = (n+ 1)!− 1.

5. Prove each of the following statements using mathematical induction.[32]

(a) For each integer n ≥ 0, 32n − 1 is divisible by 8.

(b) For each integer n ≥ 2, 2n < (n+ 1)!.

(c) For each integer n ≥ 0, 1 + 3n ≤ 4n.

(d) For every real number x > −1 and every integer n ≥ 2, 1 + nx ≤ (1 + x)n.

6. Prove each of the following statements using strong mathematical induction.[20]

(a) Suppose b1, b2, b3, · · · is a sequence defined as follows:

b1 = 4, b2 = 12, bk = bk−2 + bk−1 for each integer k ≥ 3

Prove that bn is divisible by 4 for every integer n ≥ 1.

(b) Suppose f0, f1, f2, · · · is a sequence defined as follows:

f0 = 5, f1 = 16, fk = 7fk−1 − 10fk−2 for each integer k ≥ 2

Prove that fn = 3 · 2n + 2 · 5n for every integer n ≥ 0.
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Solutions.

1. Transform each of the following by making the change of variable j = i− 1.[5]

(a)
n+1∑
i=1

(i− 1)2

i · n

X

Since 1 ≤ i ≤ n+ 1, and j = i− 1, i.e., i = j + 1, we have 1 ≤ j + 1 ≤ n+ 1. Then, we have
0 ≤ j ≤ n. As a result,

n+1∑
i=1

(i− 1)2

i · n
=

n∑
j=0

j2

(j + 1) · n

(b)
n∑

i=3

i

i+ n− 1

X

Since 3 ≤ i ≤ n, and j = i − 1, i.e., i = j + 1, we have 3 ≤ j + 1 ≤ n. Then, we have
2 ≤ j ≤ n− 1. As a result,

n∑
i=3

i

i+ n− 1
=

n−1∑
j=2

j + 1

j + 1 + n− 1
=

n−1∑
j=2

j + 1

j + n

2. Write each of following as a single summation or product.[5]

(a)

3 ·
n∑

k=1

(2k − 3) +
n∑

k=1

(4− 5k)

X

3 ·
n∑

k=1

(2k − 3) +
n∑

k=1

(4− 5k) =
n∑

k=1

(3 · (2k − 3) + (4− 5k)) =

n∑
k=1

(k − 5)

(b) (
n∏

k=1

k

k + 1

)
·

(
n∏

k=1

k + 1

k + 2

)
X (

n∏
k=1

k

k + 1

)
·

(
n∏

k=1

k + 1

k + 2

)
=

n∏
k=1

(
k

k + 1
· k + 1

k + 2

)
=

n∏
k=1

k

k + 2
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3. Compute each of the following. Assume the values of the variables are restricted so that the expressions[10]
are defined.

(a)
4!

3!

X

4!

3!
=

4 · 3!
3!

= 4

(b)
3!

0!

X

3!

0!
=

3× 2× 1

1
= 6

(c)
(n− 1)!

(n+ 1)!

X

(n− 1)!

(n+ 1)!
=

(n− 1)!

(n+ 1) · n · (n− 1)!
=

1

(n+ 1) · n
=

(n+ 1)− n

(n+ 1) · n
=

1

n
− 1

n+ 1

(d)
n!

(n− k + 1)!

X Based on the definition of factorial, we need n− k + 1 ≥ 0, that is, k ≤ n+ 1.

n!

(n− k + 1)!
=

n · (n− 1) · · · (n− k + 3) · (n− k + 2) · (n− k + 1)!

(n− k + 1)!
=

k−2∏
j=0

(n− j)

4. Prove each of the following statements using mathematical induction.[28]

(a) For every integer n ≥ 1,

1 + 6 + 11 + 16 + · · ·+ (5n− 4) =
n(5n− 3)

2
.

X

Proof by Mathematical Induction.
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First, we can also write 1 + 6 + 11 + 16 + · · ·+ (5n− 4) = n(5n−3)
2 as

n∑
i=1

(5i− 4) =
n(5n− 3)

2

Base Case: When n = 1,
Left-Hand Side (LHS):

LHS =

n∑
i=1

(5i− 4) =

1∑
i=1

(5i− 4) = 5 · 1− 4 = 1

Right-Hand Side (RHS):

RHS =
n(5n− 3)

2
=

1 · (5 · 1− 3)

2
= 1

Therefore, LHS = RHS.
Induction Step.
Assume when n = k, we have

k∑
i=1

(5i− 4) =
k(5k − 3)

2

Then, when n = k + 1,

LHS =
n∑

i=1

(5i− 4) =
k+1∑
i=1

(5i− 4) =
k∑

i=1

(5i− 4)︸ ︷︷ ︸
using the assumption

+5(k + 1)− 4

=
k(5k − 3)

2
+ 5(k + 1)− 4 =

k(5k − 3) + 10(k + 1)− 8

2
=

5k2 − 3k + 10k + 2

2

=
5k2 + 10k + 5− 3k − 3

2
=

5(k + 1)2 − 3(k + 1)

2

RHS =
n(5n− 3)

2
=

(k + 1)(5(k + 1)− 3)

2
=

5(k + 1)2 − 3(k + 1)

2

Therefore, when n = k + 1, we also have LHS = RHS.
As a result, we prove, for every integer n ≥ 1,

1 + 6 + 11 + 16 + · · ·+ (5n− 4) =
n(5n− 3)

2
.
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(b) For every integer n ≥ 3,

43 + 44 + 45 + · · ·+ 4n =
4(4n − 16)

3
.

X

Proof by Mathematical Induction.
First, we can also write 43 + 44 + 45 + · · ·+ 4n = 4(4n−16)

3 as

n∑
i=3

4i =
4(4n − 16)

3

Base Case: When n = 3,

LHS =
n∑

i=3

4i =
3∑

i=3

4i = 43

RHS =
4(4n − 16)

3
=

4(43 − 16)

3
= 43

Therefore, LHS = RHS.
Induction Step.
Assume when n = k, we have

k∑
i=3

4i =
4(4k − 16)

3

Then, when n = k + 1,

LHS =
n∑

i=3

4i =
k+1∑
i=3

4i =
k∑

i=3

4i︸ ︷︷ ︸
using the assumption

+4k+1

=
4(4k − 16)

3
+ 4k+1 =

4(4k − 16) + 3 · 4k+1

3
=

4k+1 − 4 · 16 + 3 · 4k+1

3

=
4 · 4k+1 − 4 · 16

3
=

4(4k+1 − 16)

3

RHS =
4(4n − 16)

3
=

4(4k+1 − 16)

3

Therefore, when n = k + 1, we also have LHS = RHS.
As a result, we prove, for every integer n ≥ 3,

n∑
i=3

4i =
4(4n − 16)

3
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(c) For every integer n ≥ 1,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

X

Proof by Mathematical Induction.
First, we can also write 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)

6 as

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

Base Case: When n = 1,

LHS =
n∑

i=1

i2 =
1∑

i=1

i2 = 1

RHS =
n(n+ 1)(2n+ 1)

6
=

1 · (1 + 1)(2 · 1 + 1)

6
= 1

Therefore, LHS = RHS.
Induction Step.
Assume when n = k, we have

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6

Then, when n = k + 1,

LHS =
n∑

i=1

i2 =
k+1∑
i=1

i2 =
k∑

i=1

i2︸ ︷︷ ︸
using the assumption

+ (k + 1)2

=
k(k + 1)(2k + 1)

6
+(k+1)2 =

k(k + 1)(2k + 1)

6
+
6(k + 1)2

6
=

(k + 1)(2k2 + k)

6
+
(k + 1)(6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6
=

(k + 1)(k + 2)(2k + 3)

6

RHS =
n(n+ 1)(2n+ 1)

6
=

(k + 1)(k + 2)(2k + 3)

6

Therefore, when n = k + 1, we also have LHS = RHS.
As a result, we prove, for every integer n ≥ 1,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
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(d) For every integer n ≥ 1,
n∑

i=1

i(i!) = (n+ 1)!− 1.

X

Proof by Mathematical Induction.
Base Case: When n = 1,

LHS =
n∑

i=1

i(i!) =
1∑

i=1

i(i!) = 1 · (1!) = 1

RHS = (n+ 1)!− 1 = (1 + 1)!− 1 = 2!− 1 = 2− 1 = 1

Therefore, LHS = RHS.
Induction Step.
Assume when n = k, we have

k∑
i=1

i(i!) = (k + 1)!− 1

Then, when n = k + 1,

LHS =
n∑

i=1

i(i!) =
k+1∑
i=1

i(i!) =
k∑

i=1

i(i!)︸ ︷︷ ︸
using the assumption

+ (k + 1)(k + 1)!

= (k + 1)!− 1 + (k + 1)(k + 1)! = (k + 1)! · (k + 2)− 1 = (k + 2)!− 1

RHS = (n+ 1)!− 1 = (k + 2)!− 1

Therefore, when n = k + 1, we also have LHS = RHS.
As a result, we prove, for every integer n ≥ 1,

n∑
i=1

i(i!) = (n+ 1)!− 1

5. Prove each of the following statements using mathematical induction.[32]

(a) For each integer n ≥ 0, 32n − 1 is divisible by 8.
X

Proof by Mathematical Induction.
Let a|b be b is divisible by a, i.e., b = a · k for some k ∈ Z.
Let f(n) = 32n − 1.
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Base Case: When n = 0,

f(0) = f(n) = 32n − 1 = 32·0 − 1 = 0

Therefore, 8|f(0).
Induction Step.
Assume when n = k, we have

8|f(k) i.e., 8|(32k − 1), f(k) = (32k − 1) = 8 · q for q ∈ Z

Then, when n = k + 1,

f(k+1) = f(n) = 32n−1 = 32(k+1)−1 = 32k ·9−1 = (32k−1+1) ·9−1 = 9 · (32k−1)+8

= 9 · f(k) + 8 = 9 · 8 · q + 8 = 8 · (9q + 1)

Let t = 9q+1, we have t ∈ Z and f(k+1) = 8 · t. Then, based on the definition of a|b , we have

8|f(k + 1)

Therefore, we prove, for each integer n ≥ 0, 32n − 1 is divisible by 8.

(b) For each integer n ≥ 2, 2n < (n+ 1)!.
X

Proof by Mathematical Induction.
Let f(n) = 2n and g(n) = (n+ 1)!. Then, we prove f(n) < g(n) for n ≥ 2.
Base Case: When n = 2,

f(2) = 2n = 22 = 4; g(n) = (2 + 1)! = 3! = 3 ∗ 2 ∗ 1 = 6.

Therefore, f(2) < g(2).
Induction Step.
Assume when n = k, we have

f(k) < g(k) i.e., 2k < (k + 1)!

Then, when n = k + 1,

f(k + 1) = f(n) = 2n = 2k+1 = 2 ∗ 2k = 2 ∗ f(k).

g(k + 1) = g(n) = (n+ 1)! = (k + 1 + 1)! = (k + 2)! = (k + 2) ∗ (k + 1)! = (k + 2) ∗ g(k).

Because k ≥ 2, we have k ∗ g(k) ≥ 2 ∗ 22 = 8 > 0, and f(k)− g(k) > 0 from the assumption,

g(k+1)− f(k+1) = (k+2) ∗ g(k)− 2 ∗ f(k) = k ∗ g(k) + 2 ∗ (g(k)− f(k)) > 0+ 2 ∗ 0 = 0

As a result, we have
f(k + 1) < g(k + 1).

Therefore, we prove, for each integer n ≥ 2, 2n < (n+ 1)!.
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(c) For each integer n ≥ 0, 1 + 3n ≤ 4n.
X

Proof by Mathematical Induction.
Let f(n) = (1 + 3n) and g(n) = 4n. Then, we prove f(n) ≤ g(n) for n ≥ 0.
Base Case: When n = 0,

f(0) = (1 + 3 ∗ 0) = 1; g(n) = 40 = 1.

Therefore, f(0) = g(0).
Induction Step.
Assume when n = k, we have

f(k) ≤ g(k) i.e., 1 + 3k ≤ 4k

Then, when n = k + 1,

f(k + 1) = f(n) = 1 + 3n = 1 + 3(k + 1) = 3k + 1 + 3 = f(k) + 3

g(k + 1) = g(n) = 4n = 4k+1 = 4 ∗ 4k = 4 ∗ g(k).

Because k ≥ 0, 9 · k ≥ 0, and g(k)− f(k) ≥ 0 from the assumption, we have

g(k+1)−f(k+1) = 4∗g(k)−(f(k)+3) = (g(k)−f(k))+3(f(k)−1) = (g(k)−f(k))+9·k ≥ 0+0 = 0

As a result, we have
f(k + 1) ≤ g(k + 1).

Therefore, we prove, for each integer n ≥ 0, 1 + 3n ≤ 4n.

(d) For every real number x > −1 and every integer n ≥ 2, 1 + nx ≤ (1 + x)n.
X

Proof by Mathematical Induction.
Let f(n) = 1+nx and g(n) = (1+ x)n. Then, we prove f(n) ≤ g(n) for n ≥ 2, where x > −1.
Base Case: When n = 2,

f(2) = 1 + 2x; g(2) = (1 + x)2 = 1 + 2x+ x2.

Then,
f(2)− g(2) = (1 + 2x)− (1 + 2x+ x2) = −x2.

Since −x2 ≤ 0 for any x > −1, we have f(2)− g(2) ≤ 0. That is, f(2) ≤ g(2).
Induction Step.
Assume when n = k, we have

f(k) ≤ g(k) i.e., 1 + kx ≤ (1 + x)k
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Then, when n = k + 1,

f(k + 1) = f(n) = 1 + nx = 1 + (k + 1)x = 1 + kx+ x = f(k) + x

g(k+1) = g(n) = (1+x)n = (1+x)k+1 = (1+x)∗(1+x)k = (1+x)∗g(k) = g(k)+x∗g(k).

In the following, we consider three cases to prove x ≤ x ∗ g(k).
• Case 1: when x = 0, we have x = x ∗ g(k).
• Case 2: when −1 < x < 0, we have 0 < 1 + x < 1 and 0 < g(k) = (1 + x)k < 1. Then, we

have
x ∗ g(k) > x ∵ x < 0.

For example, if g(k) = 1
2 , x = −1

3 , then x ∗ g(k) = −1
3 ∗

1
2 = −1

6 > −1
3 = x.

• Case 3: when x > 0, we have 1 + x > 1 and g(k) = (1 + x)k > 1. Then, we have

x ∗ g(k) > x ∵ x > 0.

Thus, we have x ≤ x ∗ g(k). In addition, we have f(k) ≤ g(k). We can deduce that f(k) + x ≤
g(k) + x ∗ g(k), i.e., f(k + 1) ≤ g(k + 1).
Therefore, we prove, for each integer n ≥ 2, 1 + nx ≤ (1 + x)n, where x > −1.

6. Prove each of the following statements using strong mathematical induction.[20]

(a) Suppose b1, b2, b3, · · · is a sequence defined as follows:

b1 = 4, b2 = 12, bn = bn−2 + bn−1 for each integer n ≥ 3

Prove that bn is divisible by 4 for every integer n ≥ 1.
X

Proof by Strong Mathematical Induction.
Let a|b be b is divisible by a, i.e., b = a · k for some k ∈ Z.
Base Case: When n = 1, 2, because b1 = 4, b2 = 12, we have b1 = 4 · k1, where k1 = 1,
b2 = 4 · k2, where k2 = 3. Based on the definition of a|b, we have

4|b1, 4|b2.

Induction Step.
Assume when all n ≤ k, we have

4|bn

Then, when n = k + 1, from bn = bn−2 + bn−1 for each integer n ≥ 3, we have

bk+1 = bn = bn−2 + bn−1 = bk−1 + bk

From the assumption, for all n ≤ k, 4|bn, we have

4|bk−1, and 4|bk
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That is, bk−1 = 4 · qk−1, where qk−1 ∈ Z, bk = 4 · qk, where qk ∈ Z. Then,

bk+1 = bk−1 + bk = 4 · qk−1 + 4 · qk = 4 · (qk−1 + qk)

Let qk+1 = qk−1 + qk, it is easy to see qk+1 ∈ Z. Therefore, based on the definition of a|b, we
have

4|bk+1

The proof is completed.

(b) Suppose f0, f1, f2, · · · is a sequence defined as follows:

f0 = 5, f1 = 16, fn = 7fn−1 − 10fn−2 for each integer n ≥ 2

Prove that fn = 3 · 2n + 2 · 5n for every integer n ≥ 0.
X

Proof by Strong Mathematical Induction.
Base Case: When n = 0, 1, we have

f0 = 5 = 3 · 20 + 2 · 50,
f1 = 16 = 3 · 21 + 2 · 51.

Induction Step. Assume when all n ≤ k, we have

fn = 3 · 2n + 2 · 5n.

Then, when n = k + 1, from fk+1 = fn = 7fn−1 − 10fn−2 for each integer n ≥ 3, we have

fk+1 = 7fn−1 − 10fn−2 = 7fk − 10fk−1.

From the assumption, for all n ≤ k, fn = 3 · 2n + 2 · 5n, we have

fk = 3 · 2k + 2 · 5k and fk−1 = 3 · 2k−1 + 2 · 5k−1.

As a result,

fk+1 = 7fk − 10fk−1

= 7 · (3 · 2k + 2 · 5k)− 10 · (3 · 2k−1 + 2 · 5k−1)

= 7 · 3 · 2k + 7 · 2 · 5k − 10 · 3 · 2k−1 − 10 · 2 · 5k−1

= (7 · 3− 10 · 3
2

)2k + (7 · 2− 10 · 2
5

) · 5k

= 3 · 2 · 2k + 2 · 5 · 5k

= 3 · 2k+1 + 2 · 5k+1.

The proof is completed.
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