University of New Brunswick Faculty of Computer Science

CS1303: Discrete Structures

Homework Assignment 6, **Due Time, Date** 11:59 PM, April 2, 2021

	Student Name:	Matriculation Number:	
	Instructor: Rongxing Lu The marking scheme is shown in the left margin and [100] constitutes full marks.		
[16]	1. Let $A = \{1, 3, 5, 7, 9\}$, $B = \{3, 6, 9\}$, and $C = \{2, 4, 6, 8\}$. Find each of the following:		
	(a) $A \cup B$		
	(b) $A \cap B$		
	(c) $A \cup C$		
	(d) $A \cap C$		
	(e) $A - B$		
	(f) $B-A$		
	(g) $B \cup C$		
	(h) $B \cap C$		
[8]	2. Let S be the set of all strings of 0's and 1's of length 4, and let A and B be the following subsets of S : $A = \{1110, 1111, 1000, 1001\}$ and $B = \{1100, 0100, 1111, 0111\}$. Find each of the following:		S:
	(a) $A \cup B$		
	(b) $A \cap B$		
	(c) $A - B$		
	(d) $B-A$		
[20]	3. In each of the following, draw a Venn diagram for sets A, B, and C that satisfy the given conditions.		
	(a) $A \subseteq B, C \subseteq B, A \cap C = \emptyset$		
	(b) $B \subseteq A, B \cap C = \emptyset$		
	(c) $A \cap B = \emptyset, A \subseteq C, \emptyset$	$C \cap B \neq \emptyset$	
	(d) $A \cap B \neq \emptyset, B \cap C \neq$	$f \varnothing, A \cap C = \varnothing, A \not\subseteq B, C \not\subseteq B$	
[16]	4. Let $A=\{a,b\}, B=\{1,2\}, C=\{2,3\}.$ Find each of the following sets.		
	(a) $A \times (B \cup C)$		
	(b) $(A \times B) \cup (A \times C)$		
	(c) $A \times (B \cap C)$		

(d)
$$(A \times B) \cap (A \times C)$$

[10] 5. Let Z be the set of all integers and let

$$A_0 = \{ n \in Z | n = 4k + 0, k \in Z \}$$

$$A_1 = \{ n \in Z | n = 4k + 1, k \in Z \}$$

$$A_2 = \{ n \in Z | n = 4k + 2, k \in Z \}$$

$$A_3 = \{ n \in Z | n = 4k + 3, k \in Z \}$$

Is (A_0, A_1, A_2, A_3) a partition of Z? Explain your answer.

- [20] 6. Assume that all sets are subsets of a universal set U. Please prove each statement below.
 - (a) For all sets A, B, and C, if $B \cap C \subseteq A$, then $(C A) \cap (B A) = \emptyset$.
 - (b) For all sets A, B, C, and D, if $A \cap C = \emptyset$, then $(A \times B) \cap (C \times D) = \emptyset$.
 - (c) For every positive integer n, if A and B_1, B_2, B_3, \cdots are any sets, then

$$A \cap \left(\bigcup_{i=1}^{n} B_i\right) = \bigcup_{i=1}^{n} (A \cap B_i)$$

(d) For every positive integer n, if A and B_1, B_2, B_3, \cdots are any sets, then

$$\bigcup_{i=1}^{n} (A \times B_i) = A \times \left(\bigcup_{i=1}^{n} B_i\right)$$

- [10] 7. Find a counterexample to show that the each statement is false. Assume all sets are subsets of a universal set U.
 - (a) For all sets A, B, and C,

$$(A \cup B) \cap C = A \cup (B \cap C).$$

(b) For all sets A, B, and C, if $A \not\subseteq B$ and $B \not\subseteq C$ then $A \not\subseteq C$.

Solutions.

- [16] 1. Let $A = \{1, 3, 5, 7, 9\}$, $B = \{3, 6, 9\}$, and $C = \{2, 4, 6, 8\}$. Find each of the following:
 - (a) $A \cup B$ \checkmark $A \cup B = \{1, 3, 5, 6, 7, 9\}$
 - (b) $A \cap B$ \checkmark $A \cap B = \{3, 9\}$
 - (c) $A \cup C$ \checkmark $A \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - (d) $A \cap C$ \checkmark $A \cap C = \varnothing$
 - (e) A B \checkmark $A - B = \{1, 5, 7\}$
 - (f) B A \checkmark $B A = \{6\}$
 - (g) $B \cup C$ \checkmark $B \cup C = \{2,3,4,6,8,9\}$
 - (h) $B \cap C$ \checkmark $B \cap C = \{6\}$
- [8] 2. Let S be the set of all strings of 0's and 1's of length 4, and let A and B be the following subsets of S: $A = \{1110, 1111, 1000, 1001\}$ and $B = \{1100, 0100, 1111, 0111\}$. Find each of the following:
 - (a) $A \cup B$ \checkmark $A \cup B = \{1110, 1111, 1000, 1001, 1100, 0100, 0111\}$
 - (b) $A \cap B$ \checkmark $A \cap B = \{1111\}$

(c)
$$A - B$$

 \checkmark
 $A - B = \{1110, 1000, 1001\}$

(d)
$$B - A$$
 \checkmark
 $B - A = \{1100, 0100, 0111\}$

- [20] 3. In each of the following, draw a Venn diagram for sets A, B, and C that satisfy the given conditions.
 - (a) $A \subseteq B, C \subseteq B, A \cap C = \emptyset$
 - (b) $B \subseteq A, B \cap C = \emptyset$
 - (c) $A \cap B = \emptyset$, $A \subseteq C$, $C \cap B \neq \emptyset$
 - (d) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \nsubseteq B$, $C \nsubseteq B$

✓

- [16] 4. Let $A = \{a, b\}$, $B = \{1, 2\}$, $C = \{2, 3\}$. Find each of the following sets.
 - (a) $A \times (B \cup C)$

$$A \times (B \cup C) = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

(b) $(A \times B) \cup (A \times C)$

$$(A \times B) \cup (A \times C) = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

(c)
$$A \times (B \cap C)$$

 \checkmark
 $A \times (B \cap C) = \{(a, 2), (b, 2)\}$
(d) $(A \times B) \cap (A \times C)$
 \checkmark
 $(A \times B) \cap (A \times C) = \{(a, 2), (b, 2)\}$

[10] 5. Let Z be the set of all integers and let

$$A_0 = \{n \in Z | n = 4k + 0, k \in Z\}$$

$$A_1 = \{n \in Z | n = 4k + 1, k \in Z\}$$

$$A_2 = \{n \in Z | n = 4k + 2, k \in Z\}$$

$$A_3 = \{n \in Z | n = 4k + 3, k \in Z\}$$

Is (A_0, A_1, A_2, A_3) a partition of Z? Explain your answer.

√

Yes, (A_0, A_1, A_2, A_3) is a partition of Z.

By the quotient-remainder theorem, every integer $n \in \mathbb{Z}$ can be represented in exactly one of the four forms

$$n = 4k$$
 or $n = 4k + 1$ or $n = 4k + 2$ or $n = 4k + 3$,

for some integer k. This implies that no integer can be in any two or more of the sets A_0 , A_1 , A_2 , or A_3 . So, A_0 , A_1 , A_2 , and A_3 are mutually disjoint. The theorem also implies that every integer must be in one of the sets A_0 , A_1 , A_2 , or A_3 . So $Z = A_0 \cup A_1 \cup A_2 \cup A_3$.

- [20] 6. Assume that all sets are subsets of a universal set U. Please prove each statement below.
 - (a) For all sets A, B, and C, if $B \cap C \subseteq A$, then $(C A) \cap (B A) = \emptyset$.

P: For all sets A, B, and C,

$$(B \cap C \subseteq A) \rightarrow ((C - A) \cap (B - A) = \varnothing)$$

Negation:

 $\neg P$: There exist sets A, B, and C,

$$(B \cap C \subseteq A) \wedge ((C - A) \cap (B - A) \neq \emptyset)$$

Proof by Contradiction.

Suppose $\neg P$ is true. Then, there exist sets A, B, and C, such that $((C-A)\cap (B-A)\neq\varnothing$. That is,

$$\exists x, x \in (C - A) \cap (B - A)$$

$$\equiv \exists x, (x \in (C - A)) \land (x \in (B - A))$$

$$\equiv \exists x, (x \in C \land x \in A^c) \land (x \in B \land x \in A^c)$$

$$\equiv \exists x, (x \in B) \land (x \in C) \land (x \in A^c)$$

$$\equiv \exists x, (x \in B \cap C) \land (x \in A^c)$$

Because $\exists x, x \in B \cap C$, and also $B \cap C \subseteq A$, we have $x \in A$. However, as $x \in A^c$, we have $(x \in A) \wedge (x \in A^c) = \mathbf{c}$ draws a contradiction. Therefore, $\neg P$ is false, and P is true. That is, For all sets A, B, and C,

$$(B \cap C \subseteq A) \rightarrow ((C - A) \cap (B - A) = \varnothing)$$

(b) For all sets A, B, C, and D, if $A \cap C = \emptyset$, then $(A \times B) \cap (C \times D) = \emptyset$.

P: For all sets A, B, C, and D,

$$(A \cap C = \varnothing) \to ((A \times B) \cap (C \times D) = \varnothing)$$

Negation:

 $\neg P$: There exist sets A, B, C, and D,

$$(A \cap C = \emptyset) \land ((A \times B) \cap (C \times D) \neq \emptyset)$$

Proof by Contradiction.

Suppose $\neg P$ is true. Then, there exist sets A, B, C, and D such that $(A \times B) \cap (C \times D) \neq \emptyset$. That is,

$$\exists (x,y), (x,y) \in (A \times B) \cap (C \times D)$$

$$\equiv \exists (x,y), ((x,y) \in (A \times B)) \wedge ((x,y) \in (C \times D))$$

$$\equiv \exists (x,y), (x \in A \wedge y \in B) \wedge (x \in C \wedge y \in D)$$

$$\equiv \exists (x,y), (x \in A \cap C) \wedge (y \in B \cap D)$$

Because $\exists x, x \in A \cap C$, we have $A \cap C \neq \emptyset$. Then, $(A \cap C \neq \emptyset) \wedge (A \cap C = \emptyset) = \mathbf{c}$ draws a contradiction. Therefore, $\neg P$ is false, and P is true. That is, For all sets A, B, C, and D,

$$(A \cap C = \emptyset) \rightarrow ((A \times B) \cap (C \times D) = \emptyset)$$

(c) For every positive integer n, if A and B_1, B_2, B_3, \cdots are any sets, then

$$A \cap \left(\bigcup_{i=1}^{n} B_i\right) = \bigcup_{i=1}^{n} (A \cap B_i)$$

./

We prove $A \cap (\bigcup_{i=1}^n B_i) = \bigcup_{i=1}^n (A \cap B_i)$ by respectively proving $A \cap (\bigcup_{i=1}^n B_i) \subseteq \bigcup_{i=1}^n (A \cap B_i)$ and $\bigcup_{i=1}^n (A \cap B_i) \subseteq A \cap (\bigcup_{i=1}^n B_i)$ as follows.

(1) Prove $A \cap (\bigcup_{i=1}^n B_i) \subseteq \bigcup_{i=1}^n (A \cap B_i)$ If $A \cap (\bigcup_{i=1}^n B_i) = \emptyset$, the result is straightforward. So, we consider $A \cap (\bigcup_{i=1}^n B_i) \neq \emptyset$. Because $A \cap (\bigcup_{i=1}^n B_i) \neq \emptyset$,

$$\exists x, x \in A \cap \left(\bigcup_{i=1}^{n} B_{i}\right)$$

$$\equiv \exists x, (x \in A) \wedge \left(x \in \left(\bigcup_{i=1}^{n} B_{i}\right)\right)$$

$$\equiv \exists x, (x \in A) \wedge \left(x \in B_{1} \vee x \in B_{2} \vee \dots \vee x \in B_{n}\right)$$

$$\equiv \exists x, (x \in A \wedge x \in B_{1}) \vee \left(x \in A \wedge x \in B_{2}\right) \vee \dots \vee \left(x \in A \wedge x \in B_{n}\right)$$

$$\equiv \exists x, (x \in A \cap B_{1}) \vee \left(x \in A \cap B_{2}\right) \vee \dots \vee \left(x \in A \cap B_{n}\right)$$

$$\equiv \exists x, x \in \bigcup_{i=1}^{n} (A \cap B_{i})$$

(2) Prove $\bigcup_{i=1}^{n} (A \cap B_i) \subseteq A \cap (\bigcup_{i=1}^{n} B_i)$ If $\bigcup_{i=1}^{n} (A \cap B_i) = \emptyset$, the result is straightforward. So, we consider $\bigcup_{i=1}^{n} (A \cap B_i) \neq \emptyset$. Because $\bigcup_{i=1}^{n} (A \cap B_i) \neq \emptyset$,

$$\exists x, x \in \bigcup_{i=1}^{n} (A \cap B_{i})$$

$$\equiv \exists x, (x \in A \cap B_{1}) \lor (x \in A \cap B_{2}) \lor \dots \lor (x \in A \cap B_{n})$$

$$\equiv \exists x, (x \in A \land x \in B_{1}) \lor (x \in A \land x \in B_{2}) \lor \dots \lor (x \in A \land x \in B_{n})$$

$$\equiv \exists x, (x \in A) \land (x \in B_{1} \lor x \in B_{2} \lor \dots \lor x \in B_{n})$$

$$\equiv \exists x, (x \in A) \land (x \in \left(\bigcup_{i=1}^{n} B_{i}\right))$$

$$\equiv \exists x, x \in A \cap \left(\bigcup_{i=1}^{n} B_{i}\right)$$

The proof is completed.

(d) For every positive integer n, if A and B_1, B_2, B_3, \cdots are any sets, then

$$\bigcup_{i=1}^{n} (A \times B_i) = A \times \left(\bigcup_{i=1}^{n} B_i\right)$$

We prove $\bigcup_{i=1}^n (A \times B_i) = A \times (\bigcup_{i=1}^n B_i)$ by respectively proving $\bigcup_{i=1}^n (A \times B_i) \subseteq A \times (\bigcup_{i=1}^n B_i)$ and $A \times (\bigcup_{i=1}^n B_i) \subseteq \bigcup_{i=1}^n (A \times B_i)$ as follows.

(1) Prove $\bigcup_{i=1}^{n} (A \times B_i) \subseteq A \times (\bigcup_{i=1}^{n} B_i)$ If $\bigcup_{i=1}^{n} (A \times B_i) = \emptyset$, the result is straightforward. So, we consider $\bigcup_{i=1}^{n} (A \times B_i) \neq \emptyset$. Because $\bigcup_{i=1}^{n} (A \times B_i) \neq \emptyset$,

$$\exists (x,y), (x,y) \in \bigcup_{i=1}^{n} (A \times B_{i})$$

$$\equiv \exists (x,y), ((x,y) \in (A \times B_{1})) \lor ((x,y) \in (A \times B_{2})) \lor \cdots \lor ((x,y) \in (A \times B_{n}))$$

$$\equiv \exists (x,y), (x \in A \land y \in B_{1}) \lor (x \in A \land y \in B_{2}) \lor \cdots \lor (x \in A \land y \in B_{n})$$

$$\equiv \exists (x,y), (x \in A) \land (y \in B_{1} \lor y \in B_{2} \lor \cdots \lor y \in B_{n})$$

$$\equiv \exists (x,y), (x \in A) \land (y \in \left(\bigcup_{i=1}^{n} B_{i}\right))$$

$$\equiv \exists (x,y), (x,y) \in A \times \left(\bigcup_{i=1}^{n} B_{i}\right)$$

(2) Prove $A \times (\bigcup_{i=1}^n B_i) \subseteq \bigcup_{i=1}^n (A \times B_i)$ If $A \times (\bigcup_{i=1}^n B_i) = \emptyset$, the result is straightforward. So, we consider $A \times (\bigcup_{i=1}^n B_i) \neq \emptyset$. Because $A \times (\bigcup_{i=1}^n B_i) \neq \emptyset$,

$$\exists (x,y), (x,y) \in A \times \left(\bigcup_{i=1}^{n} B_{i}\right)$$

$$\equiv \exists (x,y), (x \in A) \land (y \in \left(\bigcup_{i=1}^{n} B_{i}\right))$$

$$\equiv \exists (x,y), (x \in A) \land (y \in B_{1} \lor y \in B_{2} \lor \dots \lor y \in B_{n})$$

$$\equiv \exists (x,y), (x \in A \land y \in B_{1}) \lor (x \in A \land y \in B_{2}) \lor \dots \lor (x \in A \land y \in B_{n})$$

$$\exists (x,y), (x,y) \in \bigcup_{i=1}^{n} (A \times B_{i})$$

The proof is completed.

- [10] 7. Find a counterexample to show that the each statement is false. Assume all sets are subsets of a universal set U.
 - (a) For all sets A, B, and C,

$$(A \cup B) \cap C = A \cup (B \cap C).$$

 \checkmark

Negation:

There exist sets A, B, and C,

$$(A \cup B) \cap C \neq A \cup (B \cap C).$$

Counterexample: Let $A = \{1, 2, 3\}$, $B = \{1, 2, 4\}$, and $C = \{1, 2, 5\}$. Then, we have

$$(A \cup B) \cap C = \{1, 2, 3, 4\} \cap \{1, 2, 5\} = \{1, 2\}.$$

 $A \cup (B \cap C) = \{1, 2, 3\} \cup \{1, 2\} = \{1, 2, 3\}.$

Hence, $(A \cup B) \cap C \neq A \cup (B \cap C)$.

(b) For all sets A,B, and C, if $A\not\subseteq B$ and $B\not\subseteq C$ then $A\not\subseteq C.$

For all sets A, B, and C,

$$(A \not\subseteq B) \land (B \not\subseteq C) \to (A \not\subseteq C)$$

Negation:

There exist sets A, B, and C,

$$(A \not\subseteq B) \wedge (B \not\subseteq C) \wedge (A \subseteq C)$$

Counterexample: Let $A=\{1,2,3\}, B=\{1,2,4\},$ and $C=\{1,2,3,5,6\}.$ Then, we have $A \not\subseteq B \quad \text{and} \quad B \not\subseteq C, \quad \text{but} \quad A \subseteq C.$