CS103 Handout 12
Winter 2016 January 15, 2015

How to Negate Formulas

We are about to start using first-order logic to provide rigorous mathematical definitions of key
terms and concepts. In order to write proofs about those concepts, we will often call back to these
first-order definitions. This means that if we want to write a proof by contradiction or contrapositive,
we will need to negate statements in part or in whole. While in many cases you can just “eyeball” the
formula and figure out what the negation should be, for more complicated formulas it can be quite
difficult to immediately spot the negation of the formula.

Fortunately, there's a nice, simple algorithm you can use to take the negation of any propositional or
first-order logic formula. Even though first-order logic statements can look really dense and compli-
cated, each formula is built purely from predicates, functions, A, v, =, —, &, T, L, ¥, and 3. Conse -
quently, to negate any first-order formula, you just have to know how to negate each of these con-
structs independently.

Below is a very useful chart showing how to simplify the negation of each of those constructs:

G ~(p AY) ~(p V) —(p =) —(p <)
¢ Q- AT QAT @y
=T -l =YX, @ —dx. @
1 T dx. = Vx. -

You can read this chart as follows. Anything of the form

X

Y

means “if you see X, simplify it by replacing it with Y.” For example, the first entry says “if you see
something of the form =, you can simplify it by replacing it with ¢.” In this chart, I've used ¢
and 1 (the Greek letters phi and psi) as placeholders for more complicated formulas.

Let's try a simple example. Suppose we want to negate this formula:
Vx. (Puppy(x) — Cute(x))

We could try figuring out the negation of this formula by thinking about what it means, manipulating
that meaning intuitively, then translating it back into logic. In fact, before moving on, why don't you
take a few minutes and do just that? We can then reconvene on the next page and see if what you
came up with agrees with what we ended up with.

2/6

Okay, so by now you should have a formula written down somewhere that you think is the negation
of the above formula. I say “you should” because chances are that most of you didn't actually do
that. So please — before we move on, go try this on your own first. Okay? Okay. ©

Now, let's see how to do this mechanically. To begin with, let's put a negation at the front of the for-
mula, like this:

=Vx. (Puppy(x) — Cute(x))

We'd like to push that negation as deep as possible. To do so, let's look at our table of negations. The
formula that we have right here is a universally-quantified statement. If we look in our table, we see
that we have this rule for negating universally-quantified statements:

—Vx. @

dx. —
In this particular example, our placeholder ¢ stands in for the statement (Puppy(x) — Cute(x)).
Therefore, we can simplify our formula by rewriting it as dx. =¢. This gives us the following:
dx. =(Puppy(x) — Cute(x))

Let's keep pushing that negation deeper. The part of the formula that's negated is an implication: in
this case, it's the implication Puppy(x) — Cute(x). How do we negate that? Well, consulting the table
on the previous page, we see this rule:

—(p —)

PATY
Here, ¢ is the statement Puppy(x) and 1) is the statement Cute(x). This means that ¢ A ™ is the
formula Puppy(x) A ~Cute(x). Replacing ~(Puppy(x) — Cute(x)) in our formula with this yields the
following:

dx. (Puppy(x) A ~Cute(x))

At this point, we can't simplify any further — the only negation that exists is directly applied to a
predicate. This means that we're done — what we have above is the correct negation of the original
statement.

What does this statement say in plain English? We can read it as “there is some puppy that is not
cute.” Our original statement says “every puppy is cute.” Those two statements are indeed opposites
of one another, so it seems like we got the negation right!

How does that compare to the negation you came up with earlier? Does it match? Did you end up
with something different? If your answer is different from ours, go talk to your problem set group
about it and get their thoughts. If you're unsure, go and ask us on Piazza or in office hours,

Let's do another example, just for fun. Let's try this statement:

(Yx. Happy(x)) — (dx. Happy(x))

What's the negation of this statement? We'll derive it on the next page. Like last time, though, you
should take a minute to try to figure this out on your own first. Write down your thoughts, then re-
join us on the next page.

3/6

Did you actually try? You really should — this is a great exercise! If not, oh well, your loss. ©

This statement is a bit trickier than the previous one because, if you look closely, you'll notice that
the entire statement isn't quantified. Rather, the statement is an implication consisting of one quanti-
fied statement implying another quantified statement. Therefore, if we want to negate the entire
statement, we'll start with something like this:

~((Vx. Happy(x)) — (3x. Happy(x)))
How do we simplify this? Well, as we said before, this statement is actually a giant implication being
negated. Going back to our rule table, we see this:
~(p =)

PATY
So in order to simplify the negation, we're going to switch the — to a A and push the negation to the
consequent. This gives us the following:

(Yx. Happy(x)) A =(dx. Happy(x))

Now, we've got the negation of an existential statement. Our rule table tells us the following:

-dx. @

Vx. -
Applying this rule, we get the following:

(Yx. Happy(x)) A (Yx. =Happy(x))

How does that look compared to what you came up with initially? Do they agree? Did you find an
alternative negation? If what you have doesn't match what we came up with above, it doesn't mean
it's wrong. After all, with a bit more thought, you can simplify this a bit further, though doing so will
require you to understand at a deep level what this statement actually says.

Before concluding, let's do one final example, one that's a bit harder than the others. Suppose you
want to negate this formula:

VS.VT. (Set(S) ASet(T) > (S=T o Vx. xeSeo xe1)))

Before reading how we negated this statement, go and try negating it on your own. This one's tough,
SO go one step at a time. See what you come up with. Then, read onward to see what we did.

476

Seriously, don't read the next part until you've actually tried negating this statement on your own.
You should hop on the struggle bus and make a good effort before seeing our solution, since it's
great practice.

AuuE

STAVOGLE BUYL

5/6

Okay — let's see how to do this.
We begin by putting a negation in the front of the whole formula, as shown here:
—VS. YT. (Set(S) A Set(T) > (S=T o V¥x. xe S xeT)))

Here, we have the negation of a universally-quantified statement. We have this rule for negating uni-
versally-quantified statements:

—Vx. @

dx. —
Applying that rule gives us the following:

aS. VT, (Set(S) A Set(T) > (S=T o Vx. xe S xeT)))

We now have another negation in front of a universal quantifier. Applying the same rule tells us that
we can simplify this formula down to

3S. AT, ~(Set(S) A Set(T) — (S= T <> Vx. (x € S & x € T)))

What do we do now? Notice that the part of the formula that's currently being negated is this part
here:

(Set(S) ASet(T) > (S=Teo Vx. xeSeoxed))

This looks really complicated. How do we negate it? Well, let's start by figuring out the structure of
the formula. We've got an A, an —, two «'s, and a V. If we add in parentheses, we can see that the
overall structure of this part of the formula is

((Set(S) ASet(T)) > (S=Teo Vx.(xeSeoxeT))
Notice that the overall shape of this formula is
(@ =)
Where @ is (Set(S) A Set(T)) and ¢ is (S=T < VYx. (x € S & x € T)). (Do you see why?) We have a
rule saying how we can simplify this:
~(¢ =)

PATY
This means that we can rewrite =(¢p —) as @ A ™. In our case, doing so takes us from

aS. AT. —((Set(S) A Set(T)) > (S=T o Vx. xe S xeT)))

to
AS. AT. (Set(S) A Set(T) A~(S=T & Vx. xe S xeT)))
We're making more progress! We now have this part of the formula to simplify:
(S=TeoVx.(xeSeoxel))

Fortunately, we have a rule for dealing with it:

6/6

(g ©)
oY

Applying this rule lets us simplify

3S. AT. (Set(S) ASet(T) A~(S=T < Vx. (xe S xe 1))
to

S, AT. (Set(S) ASet(T) A (S=T & Vx. (xe S x e 1))
Applying our earlier rule about negating universal quantifiers takes us to

S, AT. (Set(S) ASet(T) A (S=T & Ix. 7(x € S & x € 7))
And, finally, applying our rule about negating biconditionals takes us to

3S. AT. Set(S) ASet(TY AN (S=T & Ix. xe S x ¢ 1))

And we're done! Notice that we've pushed the negation as deep into the formula as possible. No fur-
ther simplifications are possible, so we've got the negation of our original statement.

It turns out that there's a slightly easier way to negate this statement. Let's back up to this point:
AS. AT. (Set(S) ASet(T) A~(S=T o Vx. (xe S xe 1))

Here, we have the negation of a biconditional statement. The rule in our table says that we negate
statements like these as follows:

(¢ <)
P
However, this isn't the only legal way to negate a biconditional. We could also do the following:
(¢ <)

P e
Take a few minutes to convince yourself that this works. Check out the truth table tool — what does
it say about the truth tables here? Intuitively, does this make sense?

Applying this rule here to simplify the negated biconditional gives us the following:
AS. AT. (Set(S) ASet(T NS +#T o Vx. xe S xeT)))

At this point there's no further simplification possible. Since we never negated the innermost univer -
sal quantifier, there was no need to push the negation across that quantifier. Nifty!

Notice that every step of the way, we just applied one minor simplification at a time by figuring out
what the general structure of the formula being negated was and, from there, applying one simple
rule at a time to simplify the formula. There was never any question about “what does this formula
mean?” or “how would we express the opposite idea of this formula?” - it was a purely mechanical
process, the sort of thing that we computer scientists tend to really like.

Of course, it's good to think about what that initial formula means and what this negation means, but
we'll leave that as an exercise. ©

