University of New Brunswick Faculty of Computer Science

CS1303 Discrete Structures - Quiz 1

January 29th, 2021; Time Allowed: 20 miniutes

Stude	ent Name:	St	sudent No.:
Instr	ructions		
	paper contains 5 multiple choice	ce questions and 1	1 proof question, and comprises 2
	er ALL questions. This is an omarking scheme is shown in the	•	
	Iultiple choice questions: re, B, C or D. Make sure you on	-	earefully and choose the correct answer: wer for each question.
(1	1) Find which of the following	sentences is a pro	oposition:
	A. CS1303 is very easy	, isn't it?	
	B. Drink carrot juice!		
	C. Is there life of Mars	?	
	D. Java language belon	ngs to high-level p	rogramming languages.
(2			of length 3 over A with at least two B . What is the size of set B
	A. 27 B. 8	C. 21	D. 18
(\vec{s})	3) Which of the following stat	ements is false? _	
	A. $3 \in \{1, 2, 3\}$	B. $\{3\} \in \{1, 2, \{$	[3}}
	C. $\{3\} \subseteq \{1, 2, \{3\}\}$		
(4	4) Let ⊕ denote as the <i>exclu</i> propositions is a tautology?		a. Which of the following compound
	A. $p \oplus p$ B. $p \oplus \neg p$	C. $p \oplus \neg q$	D. $\neg p \oplus \neg q$
	5) Which of the following con $\neg (p \land q)$?	npound proposition	ons is logically equivalent to $(p \lor q) \land$
	A. $(p \land \neg q) \lor (\neg p \land q)$	B. $\neg (p \land$	$q) \vee (\neg p \wedge \neg q)$
	C. $\neg((p \land q) \land (\neg p \land \neg q))$		

[**25**] 2. Show that

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

by

- (a) Using truth tables;
- (b) Using logical equivalences.

END OF PAPER

The following table may be needed for taking this exam.

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

1101	u.		
1.	Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
2.	Associative laws:	$(p \land q) \land r \equiv p \land (q \land r)$	$(p\vee q)\vee r\equiv p\vee (q\vee r)$
3.	Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
4.	Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5.	Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \land \sim p \equiv \mathbf{c}$
6.	Double negative law:	$\sim (\sim p) \equiv p$	
7.	Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$
8.	Universal bound laws:	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9.	De Morgan's laws:	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
10.	Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
11.	Negations of t and c :	$\sim t \equiv c$	$\sim c \equiv t$

In addition, Representation of If-Then as Or (Implication Equivalence) means $p \to q \equiv \neg p \lor q$, which may also be used.

Solutions.

1.

D, C, C, B, A

2.a

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \land (q \to r)$	$p \lor q$	$(p \lor q) \to r$
Τ	T	Т	Т	Т	T	Т	T
Т	\mathbf{F}	Τ	T	Т	${ m T}$	Γ	Γ
F	$\mid T \mid$	Τ	T	Т	${ m T}$	Γ	Γ
F	F	Τ	Т	Т	T	F	Γ
Т	$\mid T \mid$	F	F	F	F	Γ	F
Т	F	F	F	Т	F	T	F
F	T	F	T	F	F	Γ	F
F	F	F	$\mid T \mid$	Γ	Т	F	brack

2.b

$$\begin{array}{cccc} (p \to r) \wedge (q \to r) & \equiv & (\neg p \vee r) \wedge (\neg q \vee r) & \text{by Representation of If-Then as Or} \\ & \equiv & (\neg p \wedge \neg q) \vee r & \text{by Distributive laws} \\ & \equiv & \neg (p \vee q) \vee r & \text{by De Morgan's law} \\ & \equiv & (p \vee q) \to r & \text{by Representation of If-Then as Or} \end{array}$$