University of New Brunswick Faculty of Computer Science CS1303 Discrete Structures - Quiz 1 January 29th, 2021;

Time Allowed: 20 miniutes

Student Name: ______ Student No.: _____

Instructions

This paper contains 5 multiple choice questions and 1 proof question, and comprises 2 pages.

Answer ALL questions. This is an open-book examination. The marking scheme is shown in the left margin and [100] constitutes full marks.

[75] 1. Multiple choice questions: read each question carefully and choose the correct answer: A, B, C or D. Make sure you only choose one answer for each question.

[15] (1) Find which of the following sentences is a proposition: _____.

- A. CS1303 is very easy, isn't it?
- B. Drink carrot juice!
- C. Is there life of Mars?

D. Java language belongs to high-level programming languages.

[15] (2) Let $A = \{a, b, c\}$. If we list all the strings of length 3 over A with at least two characters that are the same into a string set B. What is the size of set B _____.

A. 27 B. 8 C. 21 D. 18

[15] (3) Which of the following statements is false?

A.
$$3 \in \{1, 2, 3\}$$
B. $\{3\} \in \{1, 2, \{3\}\}$ C. $\{3\} \subseteq \{1, 2, \{3\}\}$ D. $\{1\} \subseteq \{1, 2, \{3\}\}$

[15] (4) Let \oplus denote as the *exclusive or* operation. Which of the following compound propositions is a tautology? _____.

A. $p \oplus p$ B. $p \oplus \neg p$ C. $p \oplus \neg q$ D. $\neg p \oplus \neg q$

[15] (5) Which of the following compound propositions is logically equivalent to $(p \lor q) \land \neg (p \land q)$?

A.
$$(p \land \neg q) \lor (\neg p \land q)$$
B. $\neg (p \land q) \lor (\neg p \land \neg q)$ C. $\neg ((p \land q) \land (\neg p \land \neg q))$ D. $(p \lor q) \lor \neg (p \land q)$

[**25**] 2. Show that

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

by

- (a) Using truth tables;
- (b) Using logical equivalences.

END OF PAPER

The following table may be needed for taking this exam.

Given any statement variables p, q, and r, a tautology **t** and a contradiction **c**, the following logical equivalences hold.

1.	Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
2.	Associative laws:	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
3.	Distributive laws:	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
4.	Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5.	Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
6.	Double negative law:	$\sim (\sim p) \equiv p$	
7.	Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$
8.	Universal bound laws:	$p \lor \mathbf{t} = \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9.	De Morgan's laws:	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
10.	Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
11.	Negations of t and c :	$\sim t \equiv c$	$\sim c \equiv t$

In addition, Representation of If-Then as Or (Implication Equivalence) means $p \to q \equiv \neg p \lor q$, which may also be used.