
5/4/21

1

Arrays and Pointers
CS2263 – Systems Software Development

1

Learning Outcomes

At the conclusion of this lecture students should be able to:

� Explain how pointers can interact with the call stack (pointers as function arguments).

� List two pointer-use “fails” and for each case, explain why

� Explain the relationship between pointers and arrays

� Program using arrays and pointers

2

5/4/21

2

Opening
Thoughts

Thanks to Brandon Ogon

3

4

5/4/21

3

Me and my friends
thinking about
pointers

5

References

�Lu, Yung-Hsiang. 2015. Intermediate C
Programming. CRC Press. New York. Pp 9-27
(Chapter 4.3-)

�Tomasz Müldner. 2000. C for Java
Programmers. Addison Wesley Longman.
Reading, MA. 499pp. Chapter 8. (available in
the Engg/CS Library)

6

5/4/21

4

The Lesson of
swap()

� Through pointers, a function can access the values of variables in
another frame.

� But you already knew that
� this is what happens in scanf() too!

� But only if the pointer references a frame below the current frame.
� What if it’s above?

int m = 0;
return &m

7

Using Pointers

1. Don’t confuse pj=piwith *pj=*pi:
int i, j, *pi, *pj;
pi = &i;
pj = &j;

2. Should this work?
int i, j;
int *pi = &i;
int *pj = &j;
scanf("%d %d", pi, pj);

3. Why bother using i and j?
int *pi;
int *pj;
scanf("%d %d", pi, pj);

8

5/4/21

5

const
Keyword

const int *p;
� pointer to a constant integer, the value of pmay change, but the

value of *p can not

int *const p;
� constant pointer to integer; the value of *p can change, but the

value of p can not

const int *const p;
� constant pointer to constant integer.

9

Generic
Pointers

� A pointer is just an address variable

� Regardless of what it points to, a pointer is just an address variable

� What if it’s just an address variable?
� void* pv;
� defines a generic, or typeless pointer p.
� often cast to (T*)p
� Generic pointers cannot be deferenced

� what would you dereference it to?

� Must cast: (double*)pv

10

5/4/21

6

Everything
About Nothing

� Special “zero” value that is useful to initialize pointers, and then to
compare pointer’s value:
if(p == NULL) {}

� NULL defined in six headers, including
� stdio.h
� stdlib.h

11

Pass by
Reference

� Consider:
void decompose(double x, long *int_part, double *frac_part){

*int_part = (long) x;
*frac_part = x - *int_part;

}

� A call of decompose:
decompose(3.24159, &i, &d);

12

5/4/21

7

One-
Dimensional
Arrays in C - I

C arrays:
� have a lower bound equal to zero

� ANSI C: arrays are static - their size must be known at compile
time (can be defined at run time in C99).

To define an array:
type arrayName[size];

� For example
1. int id[1000];
2. #define SIZE 10

double scores[SIZE+1];

13

One-
Dimensional
Arrays in C - II

� It is good programming practice to define size of an
array with a macro

#define N 100
...

int a[N];

for (i=0, sum=0; i < N; i++)
sum += a[i];

� Avoids error of falling off end of array

14

5/4/21

8

Array Compile-
time
Initialization

l Most common form:
int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

l If list of initializers is shorter, remaining elements
initialized to zero.
int a[10] = {1, 2, 3, 4, 5, 6};

l Can omit length of array when initializing
int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

15

Array
Subscripting

l a[expr], when expr is an integer expression

l a[expr] can be used as with ordinary variables
� a[0] = 1;
� printf("%d\n", a[5]);

l Idioms with for loops
for (i=0; i < N; i++)

a[i] = 0; /* clears a */

for (i=0; i < N; i++)

scanf("%d", &a[i]); /* reads data into a */

16

5/4/21

9

Arrays and
Pointers (I)

� When an array is declared, the compiler allocates enough
contiguous space in memory to contain all the elements of array.

� The array does not know how big it is. That’s your job.
� But what about sizeof()?

� See later

� A single-dimensional array is a typed constant pointer initialized
to point to a block of memory that can hold a number of objects.
int id[10];
int *pid;

pid = id;
id = pid; //FAIL, but why?

17

Arrays and
Pointers (II)

� Can access first element of an array using:
int a[10];
a[0] = 5;

� or through a pointer:
int *p;
p = &a[9];
*p = 5;

18

5/4/21

10

Pointer
arithmetic

� WAT?

� What it is and how it works (mentioned before)
int a[10];
int* pa;
// Demonstration only. Do not try this at home.
for(pa = a; pa<a+10;pa++){
*pa = 0;

}

� Summary: ”You could do that”

� Likely you’ll see it.

19

Arrays and
Functions

• Length of array is left unspecified:
int f(int a[]){...}

• If length is needed, must be specified with
extra parameter:
int f(int a[], int n){...}

� bigInt.c
1. Passing an array to a function
2. Processing an array
3. Why sizeof() is deceptive

20

5/4/21

11

21

