
K25074

w w w . c r c p r e s s . c o m

Intermediate C Programming
Lu

“… an excellent entryway into practical software development practices … I
wished I had this book some 20 years ago … the hands-on examples … are eye
opening. I recommend this book to anyone who needs to write software beyond
the tinkering level.”
—From the Foreword by Gerhard Klimeck, Reilly Director of the Center for Predic-
tive Materials and Devices and the Network for Computational Nanotechnology
and Professor of Electrical and Computer Engineering, Purdue University; Fellow
of the IOP, APS, and IEEE

“This well-written book provides the necessary tools and practical skills to turn
students into seasoned programmers. It not only teaches students how to write
good programs but, more uniquely, also teaches them how to avoid writing bad
programs. The inclusion of Linux operations and Versioning control as well as the
coverage of applications and IDE build students’ confidence in taking control over
large-scale software developments.”
—Siau Cheng Khoo, Ph.D., National University of Singapore

“This book is unique in that it covers the C programming language from a bottom-
up perspective, which is rare in programming books. … students immediately
understand how the language works from a very practical and pragmatic per-
spective.”
—Niklas Elmqvist, Ph.D., Associate Professor and Program Director, Master of
Science in Human–Computer Interaction, University of Maryland

Intermediate C Programming provides a stepping-stone for intermediate-lev-
el students to go from writing short programs to writing real programs well. It
shows students how to identify and eliminate bugs, write clean code, share code
with others, and use standard Linux-based tools, such as ddd and valgrind. The
text enhances their programming skills by explaining programming concepts and
comparing common mistakes with correct programs. It also discusses how to use
debuggers and the strategies for debugging as well as studies the connection
between programming and discrete mathematics.

Computer Science & Engineering

K25074_cover.indd 1 5/13/15 8:43 AM

Intermediate C Programming

This page intentionally left blankThis page intentionally left blank

Intermediate C Programming

Yung-Hsiang Lu
Purdue University

West Lafayette, IN, USA

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150407

International Standard Book Number-13: 978-1-4987-1164-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures xiii

List of Tables xix

Foreword xxi

Preface xxiii

Author, Reviewers, and Artist xxvii

Rules in Software Development xxix

Source Code xxxi

I Computer Storage: Memory and File 1

1 Program Execution 3
1.1 Compile . 3
1.2 Redirect Output . 7

2 Stack Memory 9
2.1 Values and Addresses . 9
2.2 Stack . 11
2.3 The Call Stack . 11

2.3.1 The Return Location . 11
2.3.2 Function Arguments . 15
2.3.3 Local Variables . 18
2.3.4 Value Address . 19
2.3.5 Arrays . 20
2.3.6 Retrieving Addresses . 21

2.4 Visibility . 21
2.5 Exercises . 24

2.5.1 Draw Call Stack I . 24
2.5.2 Draw Call Stack II . 25
2.5.3 Addresses . 25

2.6 Answers . 26
2.6.1 Draw Call Stack I . 26
2.6.2 Draw Call Stack II . 26
2.6.3 Addresses . 27

2.7 Examine the Call Stack with DDD . 27

v

vi Contents

3 Prevent, Detect, and Remove Bugs 33
3.1 Developing Software �= Coding . 33

3.1.1 Before coding . 34
3.1.2 During coding . 34
3.1.3 After coding . 35

3.2 Common Mistakes . 35
3.2.1 Uninitialized Variables . 36
3.2.2 Wrong Array Indexes . 36
3.2.3 Wrong Types . 36

3.3 Post-Execution and Interactive Debugging 36
3.4 Separate Testing Code from Production Code 37

4 Pointers 39
4.1 Scope . 39
4.2 The Swap Function . 41
4.3 Pointers . 43
4.4 The Swap Function Revisited . 47
4.5 Type Errors . 50
4.6 Arrays and Pointers . 51
4.7 Type Rules . 54
4.8 Pointer Arithmetic . 55
4.9 Exercises . 59

4.9.1 Swap Function 1 . 59
4.9.2 Swap Function 2 . 59
4.9.3 Swap Function 3 . 60
4.9.4 Swap Function 4 . 60
4.9.5 Swap Function 5 . 61
4.9.6 15,552 Variations . 61

4.10 Answers . 62
4.10.1 Swap Function 1 . 62
4.10.2 Swap Function 2 . 63
4.10.3 Swap Function 3 . 63
4.10.4 Swap Function 4 . 63
4.10.5 Swap Function 5 . 63

5 Writing and Testing Programs 65
5.1 Distinct Array Elements . 65

5.1.1 main Function . 66
5.1.2 areDistinct Function . 67
5.1.3 Compiling and Linking . 68
5.1.4 make . 69

5.2 Test Using Makefile . 71
5.2.1 Generating Test Cases . 72
5.2.2 Redirecting Output . 72
5.2.3 Use diff to Compare Output . 73
5.2.4 Adding Tests to Makefile . 73

5.3 Invalid Memory Access . 75
5.4 Using valgrind to Check Memory Access Errors 77
5.5 Test Coverage . 79
5.6 Limit Core Size . 82
5.7 Programs with Infinite Loops . 83

Contents vii

6 Strings 85
6.1 Array of Characters . 85
6.2 String Functions in C . 88

6.2.1 Copy: strcpy . 88
6.2.2 Compare: strcmp . 89
6.2.3 Finding Substrings: strstr . 90
6.2.4 Finding Characters: strchr . 90

6.3 Understanding argv . 91
6.4 Counting Substrings . 93

7 Programming Problems and Debugging 97
7.1 Implementing String Functions . 97

7.1.1 The C Library . 97
7.1.2 Header File . 98
7.1.3 mystring.h . 99
7.1.4 Creating Inputs and Correct Outputs 100
7.1.5 Makefile . 104
7.1.6 mystring.c . 105
7.1.7 Using const . 106

7.2 Debugging . 108
7.2.1 Find Infinite Loops . 108
7.2.2 Find Invalid Memory Accesses . 109
7.2.3 Detect Invalid Memory Accesses . 111

8 Heap Memory 113
8.1 Creating Array with malloc . 113
8.2 The Stack and the Heap . 115
8.3 Functions that Return a Heap Address . 118
8.4 Two-Dimensional Arrays in C . 119
8.5 Pointers and Arguments . 122

9 Programming Problems Using Heap Memory 125
9.1 Sorting an Array . 125

9.1.1 Generating Test Input and Expected Output 125
9.1.2 Redirecting Input . 127
9.1.3 Sorting Integers . 129
9.1.4 Using valgrind to Detect Memory Leaks 132

9.2 Sort Using qsort . 133
9.2.1 qsort . 133
9.2.2 The Comparison Function . 135
9.2.3 Execution Examples . 137
9.2.4 Sorting Strings . 138

10 Reading and Writing Files 141
10.1 Passing a File Name via argv . 141
10.2 Reading from Files . 142

10.2.1 Reading Characters: fgetc . 142
10.2.2 Reading Integers: fscanf(... %d...) 145

10.3 Writing to Files . 147
10.4 Reading and Writing Strings . 150

viii Contents

11 Programming Problems Using File 153
11.1 Sorting a File of Integers . 153
11.2 Counting the Occurrences of Characters . 155
11.3 Counting the Occurrences of a Word . 158
11.4 How to Comment Code . 160

II Recursion 163

12 Recursion 165
12.1 Selecting Balls with Restrictions . 166

12.1.1 Balls of Two Colors . 166
12.1.2 Balls of Three Colors . 167
12.1.3 A Further Restriction . 168

12.2 One-Way Streets . 170
12.3 The Tower of Hanoi . 171
12.4 Calculating Integer Partitions . 174

12.4.1 Count the Number of “1”s . 175
12.4.2 Odd Numbers Only . 177
12.4.3 Increasing Values . 178
12.4.4 Alternating Odd and Even Numbers 179
12.4.5 Generalizing the Integer Partition Problem 180
12.4.6 How Not to Solve the Integer Partition Problem 181

13 Recursive C Functions 183
13.1 Select Balls with Restrictions . 184
13.2 One-Way Streets . 187
13.3 The Tower of Hanoi . 188
13.4 Integer Partition . 190
13.5 Factorial . 191
13.6 Fibonacci Numbers . 193
13.7 Performance Profiling with gprof . 199

14 Integer Partition 201
14.1 Stack and Heap Memory . 202
14.2 Trace Recursive Function Calls . 210
14.3 Generating Partitions with Restrictions . 213

14.3.1 Using Odd Numbers Only . 214
14.3.2 Using Sequences of Increasing Numbers 215
14.3.3 Using Alternating Odd and Even Numbers 215
14.3.4 Using gprof and gcov to Identify Performance Bottlenecks 216

15 Programming Problems Using Recursion 223
15.1 Binary Search . 223
15.2 Quick Sort . 226
15.3 Permutations and Combinations . 232
15.4 Stack Sort . 236

15.4.1 Example 1 . 236
15.4.2 Example 2 . 237
15.4.3 Example 3 . 237
15.4.4 Example 4 . 238
15.4.5 Stack Sortable . 238

Contents ix

15.5 Tracing a Recursive Function . 242
15.6 A Recursive Function with a Mistake . 244

III Structure 247

16 Programmer-Defined Data Types 249
16.1 Struct and Object . 250
16.2 Passing Objects as Arguments . 253
16.3 Objects and Pointers . 256

16.3.1 Returning an Object . 258
16.3.2 Objects and malloc . 258

16.4 Constructors and Destructors . 261
16.5 Structures within Structures . 268
16.6 Binary Files and Objects . 270

17 Programming Problems Using Structure 275
17.1 Sorting a Person Database . 275
17.2 Packing Decimal Digits . 281

17.2.1 Number Systems . 281
17.2.2 Packing Two Decimal Digits into One Byte 282
17.2.3 Bit Operations . 283
17.2.4 Inserting and Retrieving Decimal Digits 285
17.2.5 DecPack Program . 286

17.3 Binary File and Pointer . 290

18 Linked Lists 293
18.1 Expandable Types . 293
18.2 Linked Lists . 294
18.3 Inserting Data . 295
18.4 Searching a Linked List . 297
18.5 Deleting from a Linked List . 298
18.6 Printing a Linked List . 302
18.7 Destroying a Linked List . 303

19 Programming Problems Using Linked List 307
19.1 Queues . 307
19.2 Sorting Numbers . 308
19.3 Sparse Arrays . 308
19.4 Reversing a Linked List . 314

20 Binary Search Trees 317
20.1 Binary Search Tree . 318
20.2 Inserting Data into a Binary Search Tree 319
20.3 Searching a Binary Search Tree . 323
20.4 Printing a Binary Tree . 325
20.5 Deleting from a Binary Search Tree . 327
20.6 Destroying a Binary Search Tree . 330
20.7 main . 331
20.8 Makefile . 332
20.9 Counting the Different Shapes of a Binary Tree 332

x Contents

21 Parallel Programming Using Threads 335
21.1 Parallel Programming . 335
21.2 Multi-Tasking . 336
21.3 POSIX Threads . 336
21.4 Subset Sum . 338

21.4.1 Generate Test Cases . 339
21.4.2 Sequential Solution . 341
21.4.3 Multi-Threaded Solution . 345

21.5 Interleaving the Execution of Threads . 348
21.6 Thread Synchronization . 353
21.7 Amdahl’s Law . 356

IV Applications 357

22 Finding the Exit of a Maze 359
22.1 Maze File Format . 359
22.2 Reading the Maze File . 361
22.3 The Maze Structure . 365
22.4 An Escape Strategy . 369
22.5 Implementing the Strategy . 371

22.5.1 canMove Function . 372
22.5.2 getOut Function . 372
22.5.3 Printing Visited Locations . 378

23 Image Processing 381
23.1 Structure for Image . 381
23.2 Processing Images . 387

23.2.1 Image Pixels and Colors . 388
23.2.2 Processing Functions . 388
23.2.3 Applying a Color Filter . 389
23.2.4 Inverting the Image Colors . 389
23.2.5 Edge Detection . 390
23.2.6 Color Equalization . 391

24 Huffman Compression 395
24.1 Example . 395
24.2 Encoding . 397

24.2.1 Count Frequencies . 397
24.2.2 Sort by Frequency . 399
24.2.3 Build a Code Tree . 400
24.2.4 Build a Code Book . 410
24.2.5 Compress a File . 415
24.2.6 Compress with Bits . 418

24.3 Decoding . 423

A Linux 443
A.1 Options for Installing Linux . 443
A.2 Getting Ubuntu Linux . 444
A.3 Downloading and Installing VirtualBox . 445
A.4 Install and Update Linux . 445
A.5 Install Programming Tools . 445

Contents xi

B Version Control 447
B.1 Github.com . 447
B.2 Cloning a Repository and Modifying a File 447
B.3 Adding Files and Directories . 449
B.4 Revising a Program . 449

C Integrated Development Environments (IDE) 451
C.1 Eclipse . 452
C.2 Create and Build a Project . 452
C.3 Debugging the Program . 454

Index 461

This page intentionally left blankThis page intentionally left blank

List of Figures

2.1 Pushing and popping data on a stack. (a) Originally, the top of the stack
stores the number 720. The number 653 is pushed onto the top of the stack.
(b) Data are retrieved (popped) from the stack. Pushes and pops can only
occur at the top of the stack. Although this figure illustrates the idea with
integers, a stack is a general concept and can manage any type of data. . 12

2.2 The flow of the program as indicated by the numbers 1, 2, and 3. 12
2.3 The return location is the place where the program continues after the

function f1 returns. 13
2.4 The flow of the program with the three functions. 14
2.5 The return locations (RLs) are marked at the lines after calling f2 (RL A)

and f1 (RL B). 14
2.6 Enter the commands at the bottom of DDD. 29
2.7 Use the mouse to select a inside g1. Click the right mouse button and select

“Display a”. Do the same for b. 30
2.8 The values of a and b in function g1 are shown. 30
2.9 Use the f command to see different frames. 31

8.1 A two-dimensional array has an array of pointers as the first dimension.
Each element points to an array. 120

9.1 (a) Execution time for selection sort and quick sort. (b) The ratio of the
execution time. Please note that both axes use a logarithmic scale. 140

10.1 A file is a stream. This example uses the program source code as the input
file. (a) After calling fopen, the stream starts from the very first character of
the file and ends with EOF. EOF is a special character that does not actually
exist in the file, but signifies that there is no data left in the stream. (b),(c)
Each time fgetc is called, one character is taken out of the stream. (d)
After calling fgetc enough times, all the characters in the file are retrieved.
We have not yet attempted to read past the end of the file. (e) Finally, the
end of file character EOF is returned because there are no more characters
in the file. 143

12.1 To decide f(n), consider the possibilities for the first ball. If the first ball
is B, the remaining n − 1 balls have f(n − 1) possibilities. If the first ball
is R, then the second ball must be B and the remaining n − 2 balls have
f(n− 2) possibilities. 167

12.2 To decide f(n), consider the possibilities for the first ball. If the first ball is
G or B, the remaining n− 1 balls have f(n− 1) possibilities. If the first ball
is R, the second ball must be G or B and the remaining n − 2 balls have
f(n− 2) possibilities. 168

xiii

xiv List of Figures

12.3 A city’s streets form a grid, and are either east–west bound or north–south
bound. A car can move only east or north. 170

12.4 (a) A driver cannot turn anywhere when traversing from A to B. (b) Like-
wise, a driver cannot turn anywhere when traversing from C to D. (c) There
are some turning options when traversing from E to F. At E, the driver can
go northbound first or eastbound first, as indicated by the two arrows. . . 170

12.5 The Tower of Hanoi. (a) Some disks are on pole A and the goal is to move
all the disks to pole B, as shown in (b). A larger disk can never be placed
on top of a smaller disk. A third pole, C, can be used when necessary. . . 171

12.6 Moving one disk from A to B requires only one step. 172
12.7 Moving two disks from A to B requires three steps. 172
12.8 Moving three disks from A to B requires seven steps. 173
12.9 Count the occurrences of “1” when partitioning n. 176

13.1 Computing Fibonacci numbers bottom-up without using recursion. 195
13.2 Ratio of the execution times of the recursive and the non-recursive versions

for calculating Fibonacci numbers. The recursive function is much slower
and the ratio in execution time keeps rising. 196

13.3 Computing f(5) requires calling f(4) and f(3). Computing f(4) requires
calling f(3) and f(2). 197

13.4 Redraw Fig. 13.3. This looks like a “tree”: computing each value requires
the sum of two values. 198

14.1 Graphical illustration of f1 calls f2. 211
14.2 Graphical illustration of f1 calls f2 and f3. 211
14.3 Graphical illustration of f1 calls f2 and f3; f2 also calls f3. 211
14.4 Graphical illustration of f1 calls f2 in a loop and f3 outside a loop; f2 calls

f3. 212
14.5 Graphical illustration of partition when the initial value of left is 3. . 212
14.6 Graphical illustration of partition when the value of left is 2. 213
14.7 Graphical illustration of partition when the value of left is 1. 213

15.1 In each step, the binary search reduces the number of elements to search
across by half. In the first step, key is compared with the element at the
center. If key is smaller, then it is impossible to find key in the upper half
of the array. If key is greater than the element at the center, then it is
impossible to find key in the lower half of the array. The array must have
been sorted before performing a binary search. 224

15.2 Determine the values of fv and count using a graphical illustration of the
calling relations. 243

18.1 A linked list starts empty, i.e., without any Node. This figure shows three
views: (a) the source code view, (b) a diagram, and (c) the stack memory. 295

18.2 Creating a Node object whose value is 917. Please note that head is a pointer. 295
18.3 Replacing the three lines by using List insert. 296
18.4 Calling List insert again to insert another list node. 296
18.5 Insert the third object by calling List insert again. 297
18.6 Delete the node whose value is −504. 299
18.7 To delete a list node, first create a pointer p that points to the same memory

address as head. 299
18.8 The function creates another pointer q. Its value is the same as p->next. 300

List of Figures xv

18.9 Modify p->next to bypass the node that is about to be deleted. 300
18.10 Release the memory pointed to by q. 301

19.1 (a) The original linked list. The list’s head points to A. (b) The reversed
linked list. The list’s head points to E. 314

19.2 (a) Three pointers are used. (b) Change orighead -> next and make it
point to revhead. (c) Update revhead to the new head of the reversed list.
(d) Update orighead to the new head of the remaining list. (e) Update
origsec to the second node of the remaining list. 315

20.1 An example of a binary search tree. 318
20.2 An empty tree has one pointer called root and its value is NULL; root is a

pointer and it is not a tree node. 320
20.3 A binary tree with only one tree node. Both left and right are NULL.

This node is called the root because it has no parent. It is also a leaf node
because it has no children. 320

20.4 A binary tree with two nodes. The node with value 917 remains the root. It
is no longer a leaf node because it has one child. The node with value −504
is a leaf node because it has no children. 320

20.5 A binary tree with three nodes. 321
20.6 A binary tree with five tree nodes. A new view (d) simplifies the represen-

tation of the tree. 321
20.7 Insert values 8, 4, 11, 1, 9, 7, 10, 5, 12, 15. 322
20.8 Three differently shaped binary search trees. 326
20.9 Examples of binary search trees. 327
20.10 (a) The original binary search tree. (b) Deleting the node “5”. The node is

a leaf node (has no children). This is the first case. The left child of node
“7” becomes NULL. (c) Deleting the node “14”. This node has one child.
This is the second case. The parent of “14” points to the only child of “14”,
i.e., “12”. 328

20.11 (a) The node “8” has two children. This is the third case. Exchange the
values of this node and its successor. The tree temporarily loses its ordering
property. (b) Deleting the node “8” restores the property of the binary
search tree. 329

20.12 (a) There are two uniquely shaped binary trees with 2 nodes. (b) There are
five uniquely shaped binary trees with 3 nodes. 333

20.13 Five different shapes for the pre-order traversals of binary search trees stor-
ing 1, 2, and 3. (a) < 1, 2, 3 >, (b) < 1, 3, 2 >, (c) < 2, 1, 3 >, (d) < 3, 2, 1 >,
(e) < 3, 1, 2 >. 334

22.1 Coordinates (row, column). The upper left corner is (0, 0). Moving right
increases the column; moving down increases the row. 360

22.2 Strategy to get out of a maze. Suppose ↑ is north and → is east. A gray
square is a brick. (a) If moving east in step 1 does not reach a dead end,
then keep moving east in step 2. (b) If the corridor has a turn, then follow
the turn and keep moving forward. (c) After encountering a dead end, turn
around (i.e., backtrack) and move back along the corridor. 370

xvi List of Figures

22.3 Strategy at an intersection. (a) About to enter an intersection. (b) At the
intersection (marked as “2”), try to go east first. (c) It is a dead end. Turn
around and return to the previous intersection. (d) The mark “2” now
becomes “4”, indicating that it is the fourth visited cell. Since cell “3” is a
dead end, it is marked black. 370

22.4 (a) Since east is a dead end, try to go south. (b) Enter another intersection,
marked as “6”. (c) Go east and find that it is another dead end. (d) Turn
around to the previous intersection, now marked as “8”. (This is the eighth
move in the sequence of moves.) The dead end is replaced by black. . . . 371

22.5 (a) It is not possible to go south at this intersection. Move west and mark
the cell as “9”. (b) This is another dead end. Turn around and mark the
intersection as “10”. (c) Since both options lead to dead ends, we return to
the previous intersection. The visited cells are marked black. (d) Back at
the first intersection. 371

22.6 (a) Going west is an option. (b) It is another dead end. Return to the
previous intersection. (c),(d) All options at this intersection lead to dead
ends, so it should return along the corridor. 371

22.7 Two four-way intersections at A and B. At a four-way intersection, all four
if conditions are true. 374

22.8 After reaching a dead end, we should turn around and move west. At loca-
tion 2, moving east is an option again. We will get stuck here in these two
cells and need a solution to prevent this from happening. 375

23.1 Example of metadata: the exposure time, the focal length, the time and the
date, etc. 382

23.2 (a) The RGB color space, showing the primary colors and their mixtures.
White is produced by mixing all three primary colors together. Color filters.
(b) original images. (c) red only, (d) green only, (e) blue only. 392

23.3 Color filters. (a)–(c) original images. (d) red only, (e) green only, (f) blue
only. 392

23.4 Color inversion. (a),(c): original. (b),(d): inverted. 393
23.5 Detecting vertical edges. (a) The original image. (b) Gray-scale image. The

detected edges use different threshold values. (c) 120. (d) 100. (e) 80. (f)
is 60. Many vertical edges are not detected when the threshold is too high.
When the threshold is too low, there are many false-positive edges (like the
sky). 393

23.6 Equalization. (a),(b): original images. (c),(d): processed images. 393
23.7 Equalization. (a),(b): original images. (c),(d): processed images. 393

24.1 Graphical representation of the code book. 396
24.2 (a) The characters are sorted by the frequencies. (b) A linked list is created.

List nodes are expressed by rectangles. Tree nodes are expressed by ovals. 401
24.3 (a) Take the tree nodes, L and R, from the first two list nodes. (b) Create

a tree node N whose left and right children are L and R. (c) Create a new
list node pointing to the newly created tree node. The list nodes are sorted
in the ascending order by the tree nodes’ frequencies. 402

24.4 Continue the procedure. 403
24.5 At every step, two tree nodes are removed, combined into a single tree, and

then the new tree is added into the list. 404
24.6 Continue the procedure shortening the linked list. 405

List of Figures xvii

24.7 Now the linked list has only one node. The tree has been built, and it is in
the only remaining list node. 406

24.8 A list of tree nodes. This figure shows the list as it is being built. The tree
is the same as the one shown in Fig. 24.4 (c). 410

24.9 Display the tree in DDD. 411
24.10 If there are n leaf nodes on the left side, zeros should be filled in n rows.

The column is determined by the distance from the root. 412
24.11 The expressions for the code trees are (a) 1a1b00, (b) 1a1b1c000, (c)

1a1b01c1d000, (d) 1a1b01c1d1e0000. For each tree, the number of 1s is
the same as the number of leaf nodes. The number of 0s is one plus the
number of non-leaf nodes. 416

24.12 (a) One tree node is added after reading the first command and the first
character. (b) After reading two bytes. (c) After reading six bytes. (d) The
first bit in the seventh byte is a command and it is 0. (e) The next command
bit (the second bit in the seventh byte) is 1. 424

24.13 (a) The next command (the second bit in the eighth byte) is 0. This will
create a common parent for the first two tree nodes. (b) The next command
(the third bit in the eighth byte) is also 0. This will create a common parent
for the first two tree nodes. (c) The next command (the fourth bit in the
eighth byte) is 1. This will create a tree node to store the value g. 425

24.14 The remaining commands are 0. Continue building the tree. 426
24.15 Finish building the tree. 426

B.1 Create a new repository. In this example, I call it “demorepo”. As a teacher,
I can create a free private repository. Check the box of “Initialize this repos-
itory with a README”. Add .gitignore for C. This will ignore files that
are not supposed to be in the repository. Click “Create repository”. 448

C.1 Eclipse (www.eclipse.org) is one of the most popular IDEs. 451
C.2 Select C/C++ Development Tools. 452
C.3 Select Makefile Project and call the project “prog1”. Click Finish. 453
C.4 Add a header file. 453
C.5 Call the header file prog1.h. Eclipse automatically adds #ifndef, #define,

and #endif to the header file. Add two function declarations to the header
file. 454

C.6 Add a new source file. 454
C.7 You can customize the code formatting style by clickingWindows and select-

ing Preferences. Choose a style you like. You can experiment with different
styles and decide which suits your preferences. This example uses the GNU
style. 455

C.8 Set the project’s property. Depending on your version of Eclipse and the
installed plug-ins, the build environment may already be set up correctly.
Click Project (on the menubar) and select Build Project. If Eclipse says “no
rule to make target all”, then you need to set the build environment. Select
“Generate Makefiles automatically” and click Apply. 455

C.9 When you click Project and select Build Project, Eclipse will say “undefined
reference to addtwo” and “undefined reference to subtwo”. This should be
expected because these functions have not been implemented. Eclipse’s error
message is displayed in the Console. Eclipse also highlights the two lines that
have the errors. 456

xviii List of Figures

C.10 To solve the build problem, we add another source file called addsub.c and
in this file we define the two functions. 456

C.11 When you build the project, Eclipse should say that the project is built
successfully. A valid Makefile is automatically generated by Eclipse. 457

C.12 Running: Click Run in the menubar and then select Run. 457
C.13 The program’s output is shown in the Console. 458
C.14 Eclipse uses gdb to debug programs, and also provides a convenient user

interface. To debug a program, click Run and select Debug. 458
C.15 Eclipse starts the program and stops at the first statement in main. This is

denoted by the arrow that is shown at line 13. 459
C.16 Eclipse knows how to communicate with gdb, and provides a convenient

method for common debugging commands such as step over, step into, and
toggle breakpoint. Move the mouse cursor to line 18 in the source code, and
toggle line breakpoint. 459

C.17 Click Window, Show View, and Variables. Here you can see the values of
variables as the code executes. Note that the value of c is 96. 460

List of Tables

4.1 Different usages of * in C programs. Please notice that ptr = and * ptr =

have different meanings. 46

13.1 The first ten values of Fibonacci numbers. 194
13.2 Coefficients for computing f(n). 199

16.1 Functions for opening, writing to, and reading from text and binary files. . 270

17.1 Different number systems. 282

20.1 The numbers of shapes for binary trees of different sizes. 333

21.1 Interleaving scenario 1. 351
21.2 Interleaving scenario 2. 351
21.3 Interleaving scenario 3. 352

22.1 An example of a maze. 359

xix

This page intentionally left blankThis page intentionally left blank

Foreword

Imagine you run a research or development group where writing software is the means
to examine new physics or new designs. You look for students or employees who have a
technical background in that specific physics or science, yet you also look for some software
experience. You will typically find that students will have taken a programming class or
have tinkered around with some small programs. But in general they have never written
software with any serious complexity, they have never worked in a team of people, and they
are scared to dive into an existing piece of scientific software.

Well, that is my situation. My research group studies electron flow at the nanometer
scale in the very transistors that power your future computer. As a faculty member I have
found that most of today’s graduated bachelor students in engineering or physical sciences
are used to writing small programs in scripting languages and are not even familiar with
compiling, practical debugging, or good programming practices.

I believe my situation is not unique but quite common in academia and industry. How
can you bring these novices up to speed? How can you give them the day-to-day practical
insights fast, that I had to learn through years of slow cut and try experiences?

Most advanced programming books explain complex or larger programs that are correct
and beautiful. There is an analogy here between reading a well-written book and composing
a new novel yourself. Literature analysis helps the reader to appreciate the content or the
context of a novel. While many people can read a correctly formulated algorithm in C,
few people would be able to write this code even if they were given the pseudocode (the
storyline). This book provides an entry into writing your own real code in C.

I believe that this new book provides an excellent entry way into practical software
development practices that will enable my beginning and even advanced students to be
more productive in their day-to-day work, by avoiding typical mistakes and by writing
cleaner code, since they understand the underlying implications better. This book will also
facilitate the collaborations within the group through exemplary coding styles and practices.

This book explains the importance of detecting hidden problems. A common mistake
among most students is that they pay attention to only the surface: the outputs of their
programs. Their programs may have serious problems beneath the surface. If the programs
generate correct outputs in a few cases, the students believe that the programs are correct.
This is dangerous in this connected world: A small careless mistake may become a security
threat to large complex systems. Creating a secure and reliable system starts from paying
attention to details. This book certainly covers many details where careless mistakes may
cause serious problems.

I wished I had this book some 20 years ago after I had read through Kernighan and
Richie. Back then I began writing a large code basis in C after my coding experience in
FORTRAN. Passing by reference, passing by value—simple concepts, but this book plays
out these concepts in a pedagogically sound approach. I truly like the hands-on examples
that are eye opening.

I recommend this book to anyone who needs to write software beyond the tinkering level.
You will learn how to program well. You will learn how to identify and eliminate bugs. You
will learn how to write clean code, that cleans up after itself, so it can be called millions of

xxi

xxii Foreword

times without crashing your own or someone else’s computer. You will learn how to share
code with others. All along you will begin to use standard LINUX-based tools such as ddd,
valgrind, and others.

Gerhard Klimeck
Reilly Director of the Center for Predictive Materials and Devices (c-PRIMED) and the

NCN (Network for Computational Nanotechnology)
Professor of Electrical and Computer Engineering at Purdue.

Fellow of the Institute of Physics (IOP), the American Physical Society, (APS) and
Institute of Electrical and Electronics Engineers (IEEE).

Preface

Why Is This Book Needed?

There are hundreds of books about programming, many of them about C programming.
Why do I write this book? Why should you spend time reading it? How is this book different
from any other book? Like many authors, I wanted to write this book because I perceive a
need for it. Because I think the approach in this book is better.

I divide existing programming books into two types: introductory and advanced. In-
troductory books are written for beginners. These books assume readers have no back-
ground in programming and explain the basic concepts, sometimes starting with the “Hello
World!” program: a program that prints a “Hello World!” message on the computer screen.
These books explain language features step-by-step: keywords, data types, control struc-
tures, strings, file operations, and so on. These books have a common characteristic: Every
program is short, usually one or two pages. This works because a short program can serve
to explain one new concept about the programming language. If we think of learning a
computer language as learning a natural language like English, Chinese, French, or Korean,
these books teach us how to write sentences and short paragraphs.

The second type of book is written for people comfortable with programming. These
books describe programs solving real problems. Many books about computer games or
graphics belong to this second category. The examples in these books are usually quite
long, sometimes thousands of lines of code, and too long to print inside the books. As a
result, only sections of the programs are explained in the books, and the source code is
either included on a CD or can be downloaded from the Internet. These books do not talk
about how to write programs. Instead, they focus mostly on algorithms to solve particular
problems and, sometimes, include detailed information on performance. You definitely won’t
find “Hello World!” examples anywhere in these books. Returning to the natural language
analogy, these books teach us how to write short novels, maybe a twenty-page story.

The problem is that it is difficult to jump from writing a paragraph to writing a novel.

A Book for Intermediate-Level Students

There are very few books for intermediate-level students. These students know something
about programming already. They are not surprised when they see if or while. They know
how to create functions and call functions. They can write short programs, perhaps dozens
of lines of code, but they are not ready to handle thousand-line programs. They make
mistakes often but most books talk about how to write correct programs without much
help with avoiding common mistakes. The students are unfamiliar with many concepts and
tools that can help them write better programs. These students need a stepping stone to

xxiii

xxiv Preface

take them from being capable of writing short programs to being capable of writing real
programs.

Currently, the gap is partially filled by books that cover Data Structures and Algo-
rithms. These books provide programs that implement the data structures or algorithms.
However, this is not an ideal solution. These books focus on the subjects, Data Structures
and Algorithms, but rarely provide information that helps students write correct code. In
fact, they usually include the programs without much explanation. They do not explain
programming concepts—for example, why a function needs a pointer as an argument or
the difference between deep and shallow copy. As a result, students have to learn these
programming skills by themselves.

To fill this need, I am writing this book for intermediate-level students. This book is
ideal as a second book on programming.

An Emphasis on Preventing Mistakes (“Bugs”) and Debugging

Most programming books talk about how to write programs. However, very few books
talk about how to develop software. Developing software is not simply typing code. Develop-
ing software requires much more knowledge and skill. To bridge this gap, it is useful to learn
by studying what is correct and what is wrong. Explaining how to write correct programs
is insufficient. It is also important to explain common mistakes and compare them with
correct programs.

A careless mistake can make a program behave unexpectedly. Worse, the program may
be correct in some scenarios and wrong in others. Such bugs are difficult to find as well as
to correct. This book explains some common mistakes so that readers understand how to
prevent making these mistakes. Debugging is ignored in most books. Few books mention
the word “debugger” and sometimes readers simply do not know the existence of such tools.
Learning how to use a debugger takes less than thirty minutes and can save many hours.
Even fewer books talk about how to use debuggers and the strategies for debugging.

Integration of Programming and Discrete Mathematics

Programming and discrete mathematics are two important subjects in computing. How-
ever, most books treat these two topics independently. It is rare to see mathematical equa-
tions in programming books. It is rare to see code in books on discrete mathematics. I
believe that students can benefit if they can see a closer connection between these two
subjects, as is shown in this book.

Why Does This Book Use C?

C was invented in the late 1960s and early 1970s. Many languages were invented after
C and some of them were strongly influenced by C. Despite its age, the simplicity of C

Preface xxv

has ensured that it remains the foundation of computing on almost all modern platforms.
Like many operating systems, Linux is written in C. Android is mostly written in Java but
has an interface with C, called JNI (Java Native Interface). Most computer languages can
communicate with and through C. In fact, this is generally required for a programming
language to be useful, since most operating system interfaces use C. When a brand new
system is designed, C is often the first (in many cases, the only) programming language
supported by the system.

C is a good choice for intermediate-level students because learning C requires knowing
many concepts about computers. The web site langpop.com compares the popularity of
programming languages and C is the most popular language, followed by Java. A report
in IEEE Spectrum [1] ranks popular programming languages. This report considers four
types of software: mobile, enterprise, embedded, and web. C is the most popular language
for embedded systems. When all four types are considered, the top five are:

1. Java (100%)
2. C (99.3%)
3. C++ (95.5%)
4. Python (93.4%)
5. C# (92.4%)
As you can see, three (C, C++, C#) of the top five languages are based on C. Java is

influenced by C++.

Who should read this book?

If you are a student in computer science, computer engineering, or electrical engineer-
ing, you should definitely read this book. This book covers many concepts essential for
understanding how programs work inside computers. If your major is engineering, science,
mathematics, or technology, you will very likely need to work with computers and this book
will be helpful. If your major is not engineering, science, mathematics, or technology, you
may still find many concepts in this book (such as recursion) useful.

[1] Stephen Cass, Nick Diakopoulos, Joshua J. Romero, “Interactive: The Top Programming
Languages IEEE Spectrums 2014 Ranking”, July 1, 2014, http://spectrum.ieee.org/
static/interactive-the-top-programming-languages.

This page intentionally left blankThis page intentionally left blank

Author, Reviewers, and Artist

Author

Yung-Hsiang Lu is an associate professor at the School of Electrical and Computer
Engineering in Purdue University, West Lafayette, Indiana, U.S.A. He is an ACM (Associ-
ation for Computing Machinery) Distinguished Scientist and ACM Distinguished Speaker.
In August-December 2011, he was a visiting associate professor at the Department of Com-
puter Science in the National University of Singapore. He received the Ph.D. degree from
the Department of Electrical Engineering in Stanford University, California, U.S.A.

Reviewers

Aaron Michaux is a graduate student at the School of Electrical and Computer Engi-
neering in Purdue University, West Lafayette, Indiana, U.S.A. He was awarded a BSc in
computer science from the University of Queensland, Australia, and a BA in psychology
from Saint Thomas University, New Brunswick, Canada. Aaron worked as a professional
programmer for 10 years before heading back to school to work on a Ph.D. His research
focuses mainly around computer vision and human visual perception.

Pranav Marla is an undergraduate student at the College of Science in Purdue Univer-
sity, West Lafayette, Indiana, U.S.A. He is pursuing a major in Computer Science, with
minors in Computer Engineering, Psychology, and Philosophy. He is hoping to specialize in
Machine Learning and Artificial Intelligence.

Artist

The book’s cover is painted by Kyong Jo Yoon. Yoon is a Korean artist and often places
heroic figures in natural settings. He is an adviser of the Korean Fine Arts Association and
his work is on display in the Ann Nathan Gallery in Chicago, Illinois, U.S.A.

xxvii

This page intentionally left blankThis page intentionally left blank

Rules in Software Development

Would you be satisfied with a bank’s service if the bank lost 0.1% of your money every
day due to a software mistake? Would you accept a wrist watch that lost 40 minutes
every month? Both of these are cases of “99.9% success” but are nonetheless unacceptable.
Computers are now being used in many applications, some of which could affect human
safety. If your program works correctly 99.9% of the time, then your program could kill
people during the remaining 0.1%. This is totally unacceptable, and such a program is a
failure. Thus, 99.9% success is failure.

If you live in Pasadena, California, and want to go to New York, which route should you
take? Perhaps you could go to the Los Angeles Airport and take a flight. New York is at the
east side of Pasadena but the airport is at the west side of Pasadena. Why don’t you drive
(or even walk) east from Pasadena right away? Why do you travel farther than necessary
and go west of your destination to the airport? After one hour of travel, you would be close
to New York if you drove rather than waiting in lines at an airport. The answer is simple: An
airplane is a better tool than a car for long-distance travel. In program development, there
are many tools designed for managing larger programs. You need to learn these tools. Yes,
learning these tools takes time but you spend much more time when using inappropriate
tools, or not using any tool at all. Spending time learning programming tools can save time
in development and debugging.

Despite decades of effort, computers are still pretty “dumb”. Computers cannot guess
what is on your mind. If your programs tell a computer to do the wrong thing, then the
computers will do the wrong thing. If your program is wrong, it is your fault. Computers
cannot read your mind. There are many instances in which “small” mistakes in computer
programs cause significant financial damages, injuries, or loss of lives. Missing a single
semicolon (;) can make a C program unusable. Replacing . by , can also make a C program
fail. Computer programs cannot tolerate “small” mistakes.

Passing test cases does not guarantee a program is correct. Testing can only tell you
that a program is wrong. Testing cannot tell you that a program is correct. Why? Can test
cases cover every possible scenario? Covering all scenarios is difficult and, in many cases,
impossible. Problems can be hidden inside your programs because it is difficult for test cases
to detect idiosyncratic behavior.

Producing correct outputs does not mean a program is correct. Would you consider a
plane safe if the plane has taken off and landed without any injuries? If the plane leaks fuel,
would you demand the airline fix the plane before boarding? Would you accept the airline’s
response “Nobody was hurt so this means that plane is safe.”? If a driver runs a red light
without an accident, does that mean running a red light is safe? A program that produces
correct outputs is like a plane that lands without injury. There may be problems beneath the
surface. Many tools are available to detect hidden problems in human health, for example
X-ray, MRI, and ultrasonic scan. To detect hidden problems in computer programs, we need
good tools. We need to fix programs even though they produce correct outputs.

You have to assume that your programs will fail and develop a strategy to detect and
correct mistakes. When writing a program, focus on one small part each time. Check it
carefully and ensure that it is correct before working on other small parts. For most pro-

xxix

xxx Rules in Software Development

grams, you need to write additional code for testing these small parts. You will save a lot
of time if you write additional testing code, even though the testing code is not included in
the final program. Sometimes, the testing code is more than the programs themselves. My
own experience suggests 1:3 ratio—for every line in the final program, about three lines of
testing code are needed.

No tools can replace a clear mind. Tools can help but nothing can replace deep and
thorough understanding of the concepts. If you want to be a good software developer, then
you need to fully understand every detail. Do not rely on tools to think for you: They
cannot.

Source Code

The sample programs in this book are available at github.com. Please use the following
command to retrieve the files:

$ git clone ’https://github.com/yunghsianglu/IntermediateCProgramming.git’

here $ is the shell prompt of a Linux terminal.

xxxi

This page intentionally left blankThis page intentionally left blank

Part I

Computer Storage: Memory
and File

1

This page intentionally left blankThis page intentionally left blank

Chapter 1

Program Execution

1.1 Compile . 3
1.2 Redirect Output . 7

1.1 Compile

This chapter explains how to write, compile, and execute programs in Linux. We use
a Linux terminal and explain the commands you need to type. Why do you learn how
to use the terminal? First, the terminal is a flexible and convenient interface for working
with a computer. It may take some experience to realize this, but learning how to use the
terminal may improve your productivity. Second, many cloud computing or web services
offer terminal access. This is a natural method of providing computing resources, especially
when working with many computers (like in a data center). A graphical user interface (GUI)
is nice when working with one computer. However, when dealing with many computers, GUI
can become a distraction. Also, using the terminal helps you understand how UNIX systems
work. After becoming familiar with terminal commands, you may understand integrated
development environments (IDEs), and what they can do for you. The Eclipse IDE is
explained later in this book.

Start a terminal in Linux and type

$ cd
$ pwd
$ mkdir cprogram
$ cd cprogram

In this book, $ is used as the terminal prompt.
The first command cd means “change directory”. If no argument is added after cd, as

in the first command, then it will return to your home directory (also called “folder”).
The second command pwd means “print the current working directory”. It will be some-

thing like /home/yourname/.
The third command mkdir means “make a directory”. The command mkdir cprogram

means “make a directory whose name is cprogram”.
You should not create a directory or a file whose name includes spaces. The reason is very

simple: The international standard for directory names and file names (called International
Standard Organization or ISO 9660) disallows spaces. If a directory’s or a file’s name has
spaces, then some programs may not work.

The last command cd cprogram means “change directory to (i.e., enter) cprogram”.
This is the directory that was just created.

In the terminal, type

$ which emacs

If nothing appears in the terminal or it says “Command not found”, then please install

3

4 Intermediate C Programming

Emacs first. If you do not know how to install software in Linux, please read Section A.5.
In the terminal, type

$ emacs prog1.c &

This command starts Emacs to edit a file called prog1.c. Adding & allows you to use the
terminal as well as the Emacs editor at the same time. Without the trailing &, the terminal
will force you to wait until Emacs quits. Inside Emacs, type the following code:

// prog1.c1

#include <stdio.h>2

#include <stdlib.h>3

int main(int argc , char * * argv)4

{5

int a = 5;6

int b = 17;7

printf("main: a = %d, b = %d, argc = %d\n", a, b, argc);8

return EXIT_SUCCESS;9

}10

Save the file. You can probably guess that this program prints something like

main: a = 5, b = 17, argc =

This is the first complete program shown in this book and requires some explanation. This
program prints something by calling printf. This is a function provided by the C language
but you need to include stdio.h before you can use this function. This is a header file for
standard input and output functions. In a C program, the starting point is the main function.
The program returns EXIT SUCCESS after it successfully prints the addresses. As you can
guess, if a program can return EXIT SUCCESS, another program can return EXIT FAILURE.
Why should a program return either EXIT SUCCESS or EXIT FAILURE? In today’s complex
computer systems, many programs are called by other computer programs. Thus, it is
important that your programs inform the calling programs whether your programs have
successfully accomplished what they are designed to do. This information allows the calling
programs to decide what actions to take next. EXIT SUCCESS and EXIT FAILURE are symbols
defined in stdlib.h so it is included at the second line.

In this book, source code is listed with line numbers, starting from 1. Sometimes, the
code refers to a previously mentioned example and the line number corrsponds to the value
in the earlier example.

The main function is the starting point of a C program but this is not always true for
a C++ program. If a C++ program has a static object, the object’s constructor will be
called before the main function is called. Since this book is about C programming, it is safe
to assume that the main function is the starting point of all the programs.

What is argc? It is easier to answer this question by running the program. First, we
need to explain how to convert this program from a human-readable format to a computer-
readable format.

What is typed into Emacs is a “C source file”. It is vaguely similar to English and
consists of Latin alphabet letters. However, since the computer does not understand this
format, the “source file” needs to be converted into a computer-readable format called an
executable. A compiler is the tool needed for this conversion and gcc is a popular compiler
on Linux. In the terminal, type

$ gcc prog1.c -o prog

Program Execution 5

This command means the following:
• Execute the gcc command installed in Linux.
• Use prog1.c as the input for the gcc command.
• Set the output file name to be prog (-o specifies the name of the output file). The

output file is an executable file, meaning that the computer can run it.
Do not do this:

$ gcc prog1.c -o prog1.c

This command erases the file prog1.c.
The gcc compiler has many options. Please read the documentation to learn more. To

find the documentation, type “linux gcc” in an Internet search engine and you will see
something like the following:

GCC(1) GNU GCC(1)

NAME

gcc - GNU project C and C++ compiler

SYNOPSIS

gcc [-c|-S|-E] [-std=standard]

[-g] [-pg] [-Olevel]

[-Wwarn...] [-pedantic]

[-Idir...] [-Ldir...]

[-Dmacro[=defn]...] [-Umacro]

[-foption...] [-mmachine-option...]

[-o outfile] [@file] infile...

Only the most useful options are listed here; see below for the

remainder. g++ accepts mostly the same options as gcc.

DESCRIPTION

When you invoke GCC, it normally does preprocessing,

compilation, assembly and linking. The "overall options" allow you

to stop this process at an intermediate stage. For example, the -c

option says not to run the linker. Then the output consists of

object files output by the assembler.

Other options are passed on to one stage of processing. Some

options control the preprocessor and others the compiler itself. Yet

other options control the assembler and linker; most of these are not

documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are

useful for C programs; when an option is only useful with another

language

The document is also called the “man page”, where “man” means manual. These manual
pages are typically well written but terse. Early computers were very expensive and the
designers tried to keep everything as short as possible. We have seen a few Linux commands
already:

6 Intermediate C Programming

• cd: change directory
• gcc: convert a human-readable file to a computer-readable file
• man: display a manual page
• mkdir: make a new directory

The output of the gcc command is an executable. In Linux, it is possible to find some
information about a file by using the file command. Please type this in the terminal:

$ file prog

The output should be similar to the following, but the specifics will vary depending on
the computer the program is compiled on:

ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked

(uses shared libs), for GNU/Linux 2.6.24,

BuildID[sha1]=0x65dfd5517523d920d9fbaf4ededa84792a9e9c61, not

stripped

The most important thing to pay attention to is the word “executable”. This word
means that the file “prog” is a program. By convention, executable files in Linux have no
extension, unlike “.exe” used in Windows. How do you execute the program? Type this
command:

$./prog

Here, prog is the name of the program; ./ means the current directory. Why is it
necessary to add ./ in front of the program? It is necessary because it is possible to have
files of the same name in different directories. By adding ./, the terminal knows that the
desired program is in this directory. Some people like to call their programs “test”. This is
a bad name for your program because “test” is also a built-in command in Linux. If you
type

$ test

then the Linux command is run. If you type

$./test

then your program in the directory is run.
What exactly is argc? It stores the number of arguments given to the program. Let me

demonstrate what I mean by running the program a few times.

$./prog

main: a = 5, b = 17, argc = 1

$./prog abc

main: a = 5, b = 17, argc = 2

$./prog abc 123

main: a = 5, b = 17, argc = 3

$./prog abc 123 C Programs

main: a = 5, b = 17, argc = 5

Program Execution 7

Do you notice the changes in argc? When the program is executed without anything
else, argc is 1. If some words are added after the program, then argc becomes larger.
The more words (i.e., arguments) that are added, the larger argc becomes. This illustrates
that arguments can be given to programs when they are run. Consecutive arguments are
separated by one or more spaces. The terminal tells your program (specifically, the main

function) the number of arguments. As can be seen in the examples below, adding extra
spaces between words makes no difference. One space has the same effect as several spaces.

$./prog abc 123 C Programs

main: a = 5, b = 17, argc = 5

$./prog abc 123 C Programs

main: a = 5, b = 17, argc = 5

$./prog abc 123 C Programs

main: a = 5, b = 17, argc = 5

The program itself is always the first argument. Since you must type the program’s name
to run the program, the value of argc is always at least one. What is the value of argc
when using this gcc command?

$ gcc prog1.c -o prog

The answer is 4.

1. gcc

2. prog1.c

3. -o

4. prog

The arguments themselves are strings, and are stored in argv. This will be covered when
explaining strings in Chapter 6.

1.2 Redirect Output

The printf function is probably one of the first things that people learn about writing
C programs. The famous “Hello World!” program is often used as an example for beginners.
In this computer program, the text is printed to the terminal. In some cases, however, it
is useful to redirect the information from the program and save it to a file. Here are some
scenarios when this may be useful:

• A program prints too much too fast and the computer screen cannot display everything
printed.
• You do not want to wait while the program runs, but instead want to see the infor-

mation later.
• Sometimes it is useful to check whether the program produces the same information

when it is run again. If the program produces more than several lines of output,
checking the output line-by-line is too much work.
• The program may need to be run on many computers simultaneously. It may be

impossible to watch many screens at once.

8 Intermediate C Programming

• You need to write a program that produces correct outputs based on given inputs.
This is frequently the case when taking programming courses. The correctness of the
program is evaluated by whether your program produces correct outputs. In many
cases, the programs are graded by computer programs based on the input-output
pairs. In this case, nobody reads the information on a computer screen.

If > and a file name is added after the command, then the output is saved in that file.

$./prog abc 123 C Programs > output

Nothing appears on the computer screen because the information is redirected to the
file whose name is output. You can use a text editor to see the contents of this file. You
can also use the Linux command more or less or cat to see the file’s content. If you type
more output in the terminal, this is what appears on the computer screen:

main: a = 5, b = 17, argc = 5

Since the output is saved in a file, you can use the diff command to check whether
that output is the same as the correct output, assuming you have the correct output saved
in another file. The diff command requires the names of two files and determines whether
these files are the same or not. If they are different, the command shows the line-by-line
differences. The diff program will compare the files exactly. It is often useful to ignore
whitespace and this can be done by adding -w after diff. Adding -q after diff shows only
whether the files are different or not, without showing the line-by-line differences. Although
the diff command is useful, sometimes we want to see the differences side-by-side. The
meld program in Linux does precisely that.

Chapter 2

Stack Memory

2.1 Values and Addresses . 9
2.2 Stack . 11
2.3 The Call Stack . 11

2.3.1 The Return Location . 11
2.3.2 Function Arguments . 15
2.3.3 Local Variables . 18
2.3.4 Value Address . 19
2.3.5 Arrays . 20
2.3.6 Retrieving Addresses . 21

2.4 Visibility . 21
2.5 Exercises . 24

2.5.1 Draw Call Stack I . 24
2.5.2 Draw Call Stack II . 25
2.5.3 Addresses . 25

2.6 Answers . 25
2.6.1 Draw Call Stack I . 26
2.6.2 Draw Call Stack II . 26
2.6.3 Addresses . 27

2.7 Examine the Call Stack with DDD . 27

2.1 Values and Addresses

In a computer, programs and data must be stored somewhere called storage. Without
storage, a computer has nothing to compute. Storage can be divided into volatile and non-
volatile. Volatile storage requires electricity, and can keep data only when a computer is
turned on. Volatile storage is usually called “memory”. Non-volatile storage persists when a
computer is turned off or rebooted: for example, flash memory or hard disks. Flash memory
is also called a solid-state disk or SSD.

A typical laptop computer today has several GB memory. G means “giga” and is the
metric system prefix for 1 billion. B means “byte” and is a sequence of 8 bits. Each bit can
store either 0 or 1. If a laptop has 8 GB of memory, the computer can store 64 billion bits
in memory. As a reference, the world’s population was about 7 billion in 2013.

A computer’s memory is organized into address-value pairs. These pairs are analogous
to street addresses and the families that live there. Consider the following scenario:
• The Jones family lives at One Silicon Street.
• The Smith family lives at Two Silicon Street.
• The Brown family lives at Three Silicon Street.
• The Taylor family lives at Four Silicon Street.
• The Clark family lives at Five Silicon Street.

We can express this information in a table:

9

10 Intermediate C Programming

Address Family
One Jones
Two Smith

Three Brown
Four Taylor
Five Clark

In a computer’s memory, each location stores either a zero or a one—something like the
following:
• Zero is stored at the first location.
• Zero is stored at the second location.
• One is stored at the third location.
• Zero is stored at the fourth location.
• One is stored at the fifth location.

We can also express this as a table:

Address Value
First Zero

Second Zero
Third One
Fourth Zero
Fifth One

Programmers usually consider more than one bit at a time. For the time being, let us
set aside the size of data. Instead, assume that each piece of data occupies one unit of
memory. Operating systems guarantee that everything has a unique and positive address.
The address is never zero or negative. The symbol NULL is defined as the zero address
and indicates an invalid address. It would be impossible to remember the addresses of
all of the bits of memory that a computer program manipulates. Early computer science
pioneers found an elegant solution: Create symbols, such as counter or sum to refer to the
relevant bits of memory. If the value stored corresponding to a symbol may change during
the program’s execution, this symbol is called a variable. The symbols have meaning to
humans writing computer programs, and compilers (such as gcc) convert these symbols
into addresses. The final computer program manipulates the values, and does not see the
symbols. Inside a computer’s memory, there are only addresses and values. This was a major
early innovation in easing the task of writing computer programs. The following figure shows
the relationships between symbols and addresses:

source code .c or .h files executable program
human readable −→ computer readable

symbols compiler addresses

Consider the following sample code:

int a = 5;1

double b = 6.7;2

char z = ’c’;3

The relationship between symbol, address, and value may look something like this inside
a computer’s memory:

Symbol Address Value
a 100 5
b 131 6.7
z 145 ‘c’

Stack Memory 11

A programmer has no control over the addresses—that is the job of the operating system
(e.g., Linux) and the compiler. Programmers do not need to know the addresses of a, b, or
z as long as the following rules are observed:
• Each piece of data has a unique address.
• The address cannot be zero (NULL) or negative.
• The compiler can convert symbols to addresses.

2.2 Stack

Modern computers usually organize volatile memory into three types:
1. stack memory
2. heap memory
3. program memory
The first two store data and the last stores the machine code of computer programs.

This chapter focuses on stack memory. Heap memory will be explained in a later chapter.
Before talking about stack memory, we must first introduce the concept of a stack.

Technical terms in computing are often related to the everyday meanings of the words
that they comprise. “Stack” is no exception. Ever heard of a “stack of books”? The easiest
way to add a book to a stack of books is to place it on top of the stack. The easiest way to
remove will be from the top. Thus, the first book to be removed from the stack will be the
last book previously placed on the stack. Computer scientists refer to this arrangement as
“last in, first out” (or “first in, last out”). Placing an item is called push, and removing an
item is called pop.

The stack concept is used in everyday life. To wear both socks and shoes, the socks must
go on before the shoes—push the socks, push the shoes. Then, to remove both the socks
and the shoes, the shoes come off before the socks—pop the shoes, pop the socks. The order
is reversed and this is characteristic of “last in, first out”.

Stack memory strictly follows first in, last out. New data enters the stack memory at the
top, and data are always removed from the top. It would be equivalent to add and remove
data from the bottom (i.e., it is still first in, last out); however, by convention, we use the
top instead of the bottom. The concept is the same. Data are pushed onto the top of the
stack and, later, popped from the top of the stack. Fig. 2.1 illustrates these two operations
of stack memory.

2.3 The Call Stack

2.3.1 The Return Location

How do computers use stack memory? Consider the following code snippet:

void f1(void)1

// void before f1 means no returned value2

// void in the parentheses means no argument3

{4

// ...5

12 Intermediate C Programming

720

386

-15

46

945

(a) (b)

653

push

653

720

386

-15

46

945

653

720

386

-15

46

945

pop

720

386

-15

46

945

653

bottom

top

FIGURE 2.1: Pushing and popping data on a stack. (a) Originally, the top of the stack
stores the number 720. The number 653 is pushed onto the top of the stack. (b) Data are
retrieved (popped) from the stack. Pushes and pops can only occur at the top of the stack.
Although this figure illustrates the idea with integers, a stack is a general concept and can
manage any type of data.

}6

void f2(void)7

{8

f1();9

// program continues from here after f1 finishes10

}11

The function f2 calls f1 at line 10. After f1 finishes its work, the program continues
running f2 from the line after f1. Fig. 2.2 illustrates the flow of the program.

FIGURE 2.2: The flow of the program as indicated by the numbers 1, 2, and 3.

Imagine that a mark is inserted right below the place where f1 is called, as shown in
Fig. 2.3. This mark tells the program where it should continue after f1 finishes. It is called
the “return location”, meaning that this is the place where the program should continue
after the function f1 returns (i.e., after f1 finishes its work).

A function is finished when it executes the return statement—anything below this
statement is ignored. Consider the following example:

void f(void)1

{2

i f (...)3

Stack Memory 13

FIGURE 2.3: The return location is the place where the program continues after the
function f1 returns.

{4

// ...5

return;6

// the program will never reach here7

}8

// else not needed9

// ...10

return;11

// the program will never reach here12

}13

In this function, if the condition at line 3 is true, then the function will execute the1

return at line 6. In this case, anything at line 7 is ignored and the program continues2

from the return location. However, if the condition at line 3 is false, then the function will3

execute the code at line 9. Note that it is not necessary to have an else at line 9. When the4

function reaches line 11, a return is executed, and the function stops—line 12 is ignored.5

Here, “ignored” means that the code is not executed when the program runs. Even though6

lines 7 and 12 are never executed, if they contain any syntax errors, the source code will7

not compile. Next, let’s consider three functions:8

void f1(void)9

{10

// ...11

}12

13

void f2(void)14

{15

f1();16

// line after calling f1 , return location B17

// ...18

}19

20

void f3(void)21

{22

f2();23

// line after calling f2 , return location A24

// ...25

}26

14 Intermediate C Programming

Function f3 calls f2 at line 15, and f2 calls f1 at line 8. When f1 finishes, the program
continues from the line after calling f1 (line 9). When f2 finishes, the program continues
from the line after calling f2 (line 16). How does the program know where to continue after
a function finishes? When f3 calls f2, the machine-code equivalent to “line number 16” is
pushed to the stack memory. Fig. 2.4 shows the flow of function calls when running this
program.

FIGURE 2.4: The flow of the program with the three functions.

Imagine that the line after each function call is marked as a return location (RL), as
shown in Fig. 2.5. This book uses line numbers as the return locations. The call stack in
this book is a simplified conceptual model and does not reflect any specific processor. Real
processors use program counters instead of line numbers.

FIGURE 2.5: The return locations (RLs) are marked at the lines after calling f2 (RL A)
and f1 (RL B).

Why is the last in, first out nature of stack memory important? The stack memory
stores the reverse order of function calls. This is how the program knows that it should
continue from RL B instead of RL A after f1 finishes. The program uses the stack memory to
remember the return locations. This stack memory is also called the call stack (or callstack),
and every C program has one to control the flow of execution of its functions. Almost all
computer programming languages employ this scheme.

As our three-function program executes, the call stack may appear as follows: When f3

calls f2, the line number after calling f2 (RL A) is pushed to the call stack.

line number (16) after calling f2, i.e., RL A

Stack Memory 15

When f2 calls f1, the line number after calling f1 (RL B) is pushed to the call stack.

line number (9) after calling f1, i.e., RL B
line number (16) after calling f2, i.e., RL A

When f1 finishes, the line number 9 is popped and the program continues at this line
number (9). The call stack now has line number 16.

line number (16) after calling f2, i.e., RL A

When f2 finishes, the line number is popped and the program continues at this line num-
ber (16). Programmers do not need to worry about marking return locations; the compiler
takes care of inserting the appropriate code to do this.

It is instructive to note why the stack must store the return locations. Consider this
example:

void f1(void)1

{2

// ...3

}4

5

void f2(void)6

{7

f1();8

// RL A9

// some statements ...10

f1();11

// RL B12

// ...13

}14

Function f1 is called in two different locations (line 8 and line 11). When f1 is called
the first time at line 8, the program continues from line 9 (RL A) after f1 finishes. When
f1 is called the second time at line 11, the program continues from line 12 (RL B) after f1
finishes. A call stack is a simple scheme to manage the fact that, since the same function
(f1) can be called from multiple places, something must track the next line of code to
execute.

The rules for the call stack can be summarized as follows:
• When a function is called, the line number after this call is pushed onto the call stack.

This line number is the “return location” (RL). This is the place from which the
program will continue after the called function finishes (i.e., returns).
• If the same function is called from multiple lines, then each call has a corresponding

return location (the line after each function call).
• When a function finishes, the program continues from the line number stored at the

top of the call stack. The top of the call stack is then popped.

2.3.2 Function Arguments

To understand function arguments, we must elaborate on the rather simplified examples
seen so far. To start with, most functions take input arguments and have return values. The
Merriam-Webster Dictionary defines an argument as “one of the independent variables upon
whose value that of a function depends”. For a mathematical function, such as f(x, y, z),

16 Intermediate C Programming

the variables x, y, and z are the arguments of the function f . In C programs, functions have
a similar syntax. Consider the following example:

void f1(int a, char b, double c)1

{2

// ...3

}4

5

void f2(void)6

{7

f1(5, ‘m’, 3.7);8

 // RL A9

 // ...10

}11

The inputs a, b, and c are the arguments for f1. When f1 is called, f2 must provide
three arguments and this information is pushed onto the call stack. The call stack stores
the arguments and their values above the return location.

Symbol Value
c 3.7
b ‘m’
a 5
Return Location line 9

Remember that there are no symbols inside of a computer program. Instead, as pre-
viously discussed, the computer’s memory has only addresses and values. Thus, the table
above is extended with another column to show the addresses. Every value has a unique
address—the arguments are stored in different physical parts of the computer’s circuitry—
and this property is guaranteed by the operating system and the hardware. A programmer
has no control over the precise addresses used. The addresses can vary widely on different
types of computers. This book uses 100, 101, ... for these addresses. By convention, the
addresses start from a smaller number at the bottom and increase upward.

Symbol Address Value
c 103 3.7
b 102 ‘m’
a 101 5
Return Location 100 line 9

The return location and the arguments together form a frame for the called function f1.
A frame occupies a contiguous chunk of memory. The above table can now be extended to
show the frame that the symbols, addresses, and values belong to.

Frame Symbol Address Value

f1

c 103 3.7
b 102 ‘m’
a 101 5
Return Location 100 line 9

What happens when there is another function call? Consider the following example:

void f1(int t, int u)1

{2

// ...3

Stack Memory 17

}4

5

void f2(int a, int b)6

{7

f1(a - b, a + b);8

// RL B9

// ...10

}11

12

void f3(void)13

{14

f2(5, -17);15

// RL A16

// ...17

}18

Function f3 calls f2 so f2’s frame is pushed to the call stack. Argument a’s value is 5
because that is the value given to a when f3 calls f2 at line 15. Similarly, argument b’s
value is −17 because that is the value given to b when f3 calls f2 at line 15.

Frame Symbol Address Value

f2
b 102 −17
a 101 5
Return Location 100 line 16

Function f2 calls f1 and f1’s frame is pushed onto the call stack. Argument t’s value is
22 because that is the value of a−b at line 8. Similarly, argument u’s value is −12 because
that is the value of a + b at line 8.

Frame Symbol Address Value

f1
u 105 −12
t 104 22
Return Location 103 line 9

f2
b 102 −17
a 101 5
Return Location 100 line 16

Please remember that frames and symbols are for humans only. Computers do not under-
stand frames and symbols. Instead, they only work with addresses and values. Previously,
in Section 2.3.1, we listed the rules of the call stack; now we add some more.
• If a function has arguments, then the arguments are stored above the return location.
• The arguments and the return location together form the frame of the called function.
• When a function is called, the line number after this call is pushed onto the call stack.

This line number is the “return location” (RL). This is the place from which the
program will continue after the called function finishes (i.e., returns).
• If the same function is called from multiple lines, then each call has a corresponding

return location (the line after each function call).
• When a function finishes, the program continues from the line number stored at the

top of the call stack. The top of the call stack is then popped.

18 Intermediate C Programming

2.3.3 Local Variables

If a function has local variables, then the local variables are stored in the call stack.
Consider the following program:

void f1 (int k, int m, int p)1

{2

int t = k + m;3

int u = m * p;4

}5

6

void f2 (void)7

{8

f2 (5, 11, -8);9

// RL A10

}11

The arguments k, m, and p are stored above the return location A. The local variables
t and u are stored on the call stack above the arguments.

Frame Symbol Address Value

f1

u 105 -88
t 104 16
p 103 -8
m 102 11
k 101 5
Return Location 100 line 12

Now one more call stack rule must be added.
• If a function has local variables, then the local variables are stored above the argu-

ments.
• If a function has arguments, then the arguments are stored above the return location.
• The arguments and the return location together form the frame of the called function.
• When a function is called, the line number after this call is pushed onto the call stack.

This line number is the “return location” (RL). This is the place from which the
program will continue after the called function finishes (i.e., returns).
• If the same function is called from multiple lines, then each call has a corresponding

return location (the line after each function call).
• When a function finishes, the program continues from the line number stored at the

top of the call stack. The top of the call stack is then popped.
Local variables are always stored on the stack, where they reside for the duration of the

function call. They exist in contrast to “global variables”, which persist between function
calls. Global variables are usually specified at the top of a given source file, and any function
can read and write to them. While sometimes convenient, global variables can lead to subtle
software bugs. In 1973, Wulf et al. wrote an article, “Global Variables Considered Harmful”.
It explained in some detail why programmers should avoid global variables. The software
community generally concurs, and use of global variables has been strongly discouraged
since then. Although C allows global variables, well-written software almost always avoids
global variables. The main problem is that global variables may be changed anywhere in a
program. As the program becomes larger and more complex, it becomes increasingly harder
to track the places where these global variables may change. Losing track of the changes
can often lead to surprising behavior in the program. For further information, please read
Wulf’s paper to understand why global variables are problematic. Although global variables

Stack Memory 19

are strongly discouraged, global constants are acceptable and commonly used because they
cannot change.

2.3.4 Value Address

So far, all our functions’ return types have been void, i.e., the functions have all returned
nothing. Functions can return values. Consider this example:

int f1(int k, int m)1

{2

return (k + m);3

}4

5

void f2(void)6

{7

int u;8

u = f1(7, 2);9

// RL A10

}11

The local variable u is inside f2 so it is in f2’s frame. The value of u is undefined because
it has not yet been assigned to anything. Remember that C does not initialize variables,
so uninitialized variables could store any values (i.e., garbage). The frame for f2 contains
the variable u whose value is undefined yet.

Frame Symbol Address Value
f2 u 100 garbage

The address of u is stored in the call stack before f1 is called. This address is called the
value address because it is the address where the return value of function f1 will be stored.
Thus, when the frame for f1 is constructed, one more row is added for the value address,
and its value is the address of u.

Frame Symbol Address Value

f1

m 104 2
k 103 7
Value Address 102 100
Return Location 101 line 10

f2 u 100 garbage

When function f1 executes, it adds the values of k and m, producing the value 9. The
number 9 is then written to (i.e., replaces) the original garbage value at address 100. After
f1 finishes, and its frame has been popped, the call stack will be as follows:

Frame Symbol Address Value
f2 u 100 9

This rule can be incorporated into the previous rules of the call stack.
• If a function returns a value, the value is written to a local variable in the caller’s

frame. This variable’s address (called the value address) is stored in the call stack.
• If a function has local variables, then the local variables are stored above the argu-

ments.
• If a function has arguments, then the arguments are stored above the return location.

20 Intermediate C Programming

• The arguments and the return location together form the frame of the called function.
• When a function is called, the line number after this call is pushed onto the call stack.

This line number is the “return location” (RL). This is the place from which the
program will continue after the called function finishes (i.e., returns).
• If the same function is called from multiple lines, then each call has a corresponding

return location (the line after each function call).
• When a function finishes, the program continues from the line number stored at the

top of the call stack. The top of the call stack is then popped.
Note that the caller (f2) is not obliged to store the return value of the callee (f1), and

line 9 in the example above can be written as:

f1(7, 2);9

In this case, function f1 is called but the returned value is discarded. Since there is no need
to store the return value, the value address is not pushed onto the call stack.

The keyword return can be used for two different purposes:
• If void is in front of the function’s name, the function does not return any value. The

word return stops the function and the program continues from the return location
in the caller.
• If the function is not void, the word return assigns a value to the variable given by

the value address in the call stack.
Please remember that if a function executes a return statement, anything after the

return is ignored and will not be executed. Executing a return statement stops the func-
tion, and its frame is popped from the call stack. The program then continues from the
return location.

2.3.5 Arrays

The following example creates an array of five elements. Each element contains one
integer, which will be uninitialized.

int arr [5];1

Symbol Address Value
arr[4] 104 garbage
arr[3] 103 garbage
arr[2] 102 garbage
arr[1] 101 garbage
arr[0] 100 garbage

If an array has five elements, the valid indexes are 0, 1, 2, 3, and 4. The first index is
0, not 1; the last index is 4, not 5. The array is said to be “zero indexed”. In general, if an
array has n elements, the valid indexes are 0, 1, 2, ..., n− 1. Please remember that n is
not a valid index. This is a common mistake among students.

Programmers have no control over addresses and this is still true for arrays. The ad-
dresses of an array’s elements are, however, always contiguous. Suppose i < j < k and all
of them are valid indexes for an array called arr. Then the address of arr[j] is between
the addresses of arr[i] and arr[k]. If an array’s elements are not initialized (like in the
example above), then the values are garbage.

The following example illustrates C’s facility to initialize arrays:

int arr[5] = {-31, 52, 65, 49, -18};1

Stack Memory 21

Symbol Address Value
arr[4] 104 −18
arr[3] 103 49
arr[2] 102 65
arr[1] 101 52
arr[0] 100 −31

It is possible to initialize all the elements to zero in this way:

int arr[5] = {0};1

It is possible to create an array without giving the size:

int arr[] = {-31, 52, 65, 49, -18};1

In this case, the compiler automatically calculates the size as 5.

2.3.6 Retrieving Addresses

It is possible to get a variable’s address by adding an & in front of it. This address can be
printed with the printf function by using the “%p” format specifier. The following example
prints the addresses of both a and c.

// address.c1

#include <stdio.h>2

#include <stdlib.h>3

int main(int argc , char * * argv)4

{5

int a = 5;6

int c = 17;7

printf("a’s address is %p, c’s address is %p\n", &a, &c);8

return EXIT_SUCCESS;9

}10

Below is a sample output from this program:

a’s address is 0x7fff2261aea8, c’s address is 0x7fff2261aeac

The output will probably be different when the program is run again:

a’s address is 0x7fffb8dad0b8, c’s address is 0x7fffb8dad0bc

As you can see, the addresses change. If you execute the same program, you will likely
see different addresses.

2.4 Visibility

Every time a function is called, a new frame is pushed to the call stack. A function
can see only its own frame. Consider these two examples:

22 Intermediate C Programming

int f1(int k, int m)1

{2

return (k + m);3

}4

5

void f2(void)6

{7

int a = 5;8

int b = 6;9

int u;10

u = f1(a + 3, b - 4);11

// some additional code12

}13

int f1(int a, int b)1

{2

return (a + b);3

}4

5

void f2(void)6

{7

int a = 5;8

int b = 6;9

int u;10

u = f1(a + 3, b - 4);11

// some additional code12

}13

These two programs are identical. Renaming the arguments of f1 from k and m to a and
b has no effect. What about the call stack? This is the call stack when f1 is called in the
first example:

Frame Symbol Address Value

f1

m 106 2
k 105 8
Value Address 104 102
Return Location 103 line 14

f2
u 102 garbage
b 101 6
a 100 5

The call stack in the second example is the same, except that the arguments in frame f1

have different symbols. Note that the addresses are the same. The second example highlights
the fact that the a and b in f1 refer to different address–value pairs than the a and b in f2.
This is the call stack:

Frame Symbol Address Value

f1

b 106 2
a 105 8
Value Address 104 102
Return Location 103 line 14

f2
u 102 garbage
b 101 6
a 100 5

The a in f1’s frame has nothing to do with the a in f2’s frame. Renaming a to k makes
no difference to the behavior of the program. The same rule applies to b. Remember that
computers do not know about symbols. Computers only use addresses and values. Symbols
are only useful for any humans that are reading the code, and are discarded when a program
is compiled into machine-readable format.

This can be a source of confusion among students. It may seem intuitive that the a in
f1’s frame and the a in f2’s frame are related. In fact, they occupy different locations in
the call stack and are unrelated. The following example offers a further explanation:

int f1(int a, int b)1

{2

a = a + 9;3

Stack Memory 23

b = b * 2;4

return (a + b);5

}6

7

void f2(void)8

{9

int a = 5;10

int b = 6;11

int u;12

u = f1(a + 3, b - 4);13

// some additional code14

}15

The following table shows the call stack when the program has entered f1 but has not
yet executed line 3:

Frame Symbol Address Value

f1

b 106 2
a 105 8
Value Address 104 102
Return Location 103 line 14

f2
u 102 garbage
b 101 6
a 100 5

After line 3 has been executed, the call stack will appear as in the table below. Note
that function f1 only modifies the variable a that is in its frame, since a function can only
see arguments and variables in its own frame.

Frame Symbol Address Value

f1

b 106 2
a 105 8 → 17
Value Address 104 102
Return Location 103 line 14

f2
u 102 garbage
b 101 6
a 100 5

The following table shows the call stack after the program has executed line 4:

Frame Symbol Address Value

f1

b 106 2 → 4
a 105 8 → 17
Value Address 104 102
Return Location 103 line 14

f2
u 102 garbage
b 101 6
a 100 5

Function f1 returns a + b, which is 17 + 4 = 21. The value 21 is written to the value
at address 102 (i.e., the value address). After f1 returns, the call stack is as follows:

24 Intermediate C Programming

Frame Symbol Address Value

f2
u 102 21
b 101 6
a 100 5

Note that the values of a and b in f2 have not changed.
Even though the same symbol may appear in different frames, the same name cannot

be defined twice within the same frame. The following program is invalid because a is used
as both an argument and a local variable, in the same function:

int f1(int a, int b)1

{2

int k = 3;3

int m = -5;4

int a = k + 2; // cannot define ‘a’ twice5

int b = m - 1;6

return (k + m);7

}8

9

void f2(void)10

{11

int a = 5;12

int b = 6;13

int u;14

u = f1(a + 3, b - 4);15

// some additional code16

}17

In review, this chapter explains the concept of the call stack, which is used whenever a
function is called. The call stack stores the return location, the value address, the arguments,
and the local variables for each function.

2.5 Exercises

This book has two types of homework: exercises and programming problems. Exercises
are problems that do not require writing programs—they are “paper-and-pencil” problems.
Programming problems, obviously, are done on a computer.

Understanding the call stack is one of the most essential skills for programmers. If you
want to understand C programs (and many other programming languages), then a solid
understanding about the call stack is necessary.

2.5.1 Draw Call Stack I

int f1(int k, int m)1

{2

int y;3

y = k + m;4

return y;5

Stack Memory 25

}6

7

void f2(void)8

{9

int a = 83;10

int c = -74;11

c = f1(a, c);12

/* RL */13

}14

Draw the call stack
• before f1 is called.
• when the program has finished line 4.
• when the program has finished f1 and the top frame has been popped.

2.5.2 Draw Call Stack II

void f1(int k, int m)1

{2

int y;3

y = k;4

k = m;5

m = y;6

}7

8

void f2(void)9

{10

int a = 83;11

int c = -74;12

f1(a, c);13

/* RL */14

}15

Draw the call stack
• when the program has entered f1 and finished line 4. What are the values of k and m?
• when the program has finished line 6, and before f1’s frame is popped. What are the

values of k and m?
• when the program has finished f1 and f1’s frame has been popped. What are the

values of a and c?

2.5.3 Addresses

• How can a programmer control the address of a variable?
• If the same program runs multiple times, will the address of the same variable be the

same?
• Are the addresses of an array’s elements contiguous or scattered?

26 Intermediate C Programming

2.6 Answers

2.6.1 Draw Call Stack I

• before calling f1

Frame Symbol Address Value

f2
c 101 −74
a 100 83

• finished line 4

Frame Symbol Address Value

f1

y 106 9
m 105 −74
k 104 83
Value Address 103 101
Return Location 102 line 13

f2
c 101 −74
a 100 83

• after f1’s frame popped

Frame Symbol Address Value

f2
c 101 9
a 100 83

2.6.2 Draw Call Stack II

• finished line 4

Frame Symbol Address Value

f1

y 105 83
m 104 −74
k 103 83
Return Location 102 line 14

f2
c 101 −74
a 100 83

• finished line 6

Frame Symbol Address Value

f1

y 105 83
m 104 83
k 103 −74
Return Location 102 line 14

f2
c 101 −74
a 100 83

The values of k and m have been swapped.

Stack Memory 27

• f1’s frame popped

Frame Symbol Address Value

f2
c 101 −74
a 100 83

The values of a and c have not changed.

2.6.3 Addresses

• A programmer cannot control the address of a variable.
• If the same program runs multiple times, the address of the same variable will likely

be different.
• The addresses of an array’s elements are contiguous.

2.7 Examine the Call Stack with DDD

Type the following program into an editor and save it under the name p1.c

/* p1.c */1

#include <stdio.h>2

#include <stdlib.h>3

int g1(int a, int b)4

{5

int c = (a + b) * b;6

printf("g1: a = %d, b = %d, c = %d\n", a, b, c);7

return c;8

}9

10

int g2(int a, int b)11

{12

int c = g1(a + 3, b - 11);13

printf("g2: a = %d, b = %d, c = %d\n", a, b, c);14

return c - b;15

}16

17

int main(int argc , char * * argv)18

{19

int a = 5;20

int b = 17;21

int c = g2(a - 1, b * 2);22

printf("main: a = %d, b = %d, c = %d\n", a, b, c);23

return EXIT_SUCCESS;24

}25

Do not worry about fully understanding argv in the main function yet; this will be discussed
later. Create the executable using the following command in a Linux terminal:

$ gcc -g -Wall -Wshadow p1.c -o p1

28 Intermediate C Programming

This uses gcc to convert the source file of the C program (p1.c), into an executable file that
the computer can understand. Adding -g enables debugging so that we can examine the
call stack. Adding -Wall and -Wshadow enables warning messages. Shadow variables will be
explained in Section 4.1. Warning messages are sometimes benign, but they usually indicate
deeper problems in the code. It is good practice to always enable warning messages, and to
act on gcc’s advice. The name of the output file (i.e., the executable file) is specified by -o.
In this example, p1 is the output of the gcc command and, thus, is the executable file (i.e.,
the program). It can be run in the terminal by typing:

$./p1

The output should be the same as the following:

g1: a = 7, b = 23, c = 690

g2: a = 4, b = 34, c = 690

main: a = 5, b = 17, c = 656

To view the call stack, we will need to start the debugger. In this example, we will use
DDD (Data Display Debugger). DDD is a graphical user interface for the GDB debugger.
Start DDD, go to the menu and click

File - Open Program - select p1 - Open
Here, we have selected the executable program, not the .c file. The debugger will automat-
ically find the .c file based on information that gcc leaves in the executable. This is useful
when debugging a program that uses multiple source files.

Set breakpoints at the two functions g1 and g2 with the following commands after the
(gdb) prompt in the bottom window:

(gdb) b g1

(gdb) b g2

The command b g1 instructs DDD to set a breakpoint when the function g1 starts.
When the program reaches the first line of g1, the program will stop and you will get a
chance to check the status of the program. The command b g2 instructs DDD to similarly
set a breakpoint when the function g2 starts.

Execute the program by typing the following command at the (gdb) prompt:

(gdb) run

The program will start, and then pause at the breakpoint of function g2. Why does the
program stop at g2, not g1? Because main calls g2, so g2 is encountered before g1. If
several breakpoints are set, the program will pause at the breakpoints based on the order
in which they are executed, not the order in which they are set. In this example, although
the breakpoint at g1 is set first, the program executes g2 first. Thus, the program pauses
at the breakpoint g2 first.

To continue the program, type the following command:

(gdb) continue

The program will continue executing and then pause at the next breakpoint, located at
function g1. The call stack can be viewed by asking for the backtrace. This is done with
the following command:

(gdb) bt

Stack Memory 29

This command means “backtrace”. What do you see in the debugger?

(gdb) bt

#0 g1 (a=7, b=23) at p6.c:6

#1 0x0000000000400554 in g2 (a=4, b=34) at p6.c:13

#2 0x00000000004005b2 in main (argc=1, argv=0x7fffffffe4f8) at p1.c:22

The values of a and b are shown in the top frame. The beginning of each line shows the
frames (0, 1, and 2) of the call stack, corresponding to the functions g1, g2, and main. You
can use the f command to see different frames: for example, type

(gdb) f 1

to go to frame 1, i.e., the frame of function g2. The values of a and b can be displayed again.
What are their values? The digits after 0x are likely different on your computer; these are
the addresses. In g2’s frame, the values of a and b are different from the values in the top
frame. Fig. 2.6 to Fig. 2.9 show some screenshots of DDD.

FIGURE 2.6: Enter the commands at the bottom of DDD.

30 Intermediate C Programming

FIGURE 2.7: Use the mouse to select a inside g1. Click the right mouse button and select
“Display a”. Do the same for b.

FIGURE 2.8: The values of a and b in function g1 are shown.

Stack Memory 31

FIGURE 2.9: Use the f command to see different frames.

This page intentionally left blankThis page intentionally left blank

Chapter 3

Prevent, Detect, and Remove Bugs

3.1 Developing Software 6= Coding . 33
3.1.1 Before coding . 34
3.1.2 During coding . 34
3.1.3 After coding . 35

3.2 Common Mistakes . 35
3.2.1 Uninitialized Variables . 36
3.2.2 Wrong Array Indexes . 36
3.2.3 Wrong Types . 36

3.3 Post-Execution and Interactive Debugging . 36
3.4 Separate Testing Code from Production Code . 37

Some books suggest that software should be well-designed, carefully written, and never
debugged. These books do not say anything about debugging. From my experience writing
programs, working with students, and talking to people in the software industry, debugging
is difficult to avoid completely, even when software is planned and written carefully. In some
ways, debugging is like editing an article. It is very difficult to write a good article without
any editing. Even though debugging is difficult to avoid completely, it should not be relied
upon. Experienced programmers carefully prevent bugs from happening and detect them
as early as possible.

Many people learn software development by writing small programs (tens of lines for
each program). This is good because learning should progress in stages. The problem is that
many people hold onto habits acceptable for small programs when they attempt to write
larger programs. Writing a program of 400 lines requires different strategies than writing a
program of 40 lines. This book is written for people learning how to write programs that are
between 100 and 1,000 “lines of code” (LoC). Although LoC is not a particularly good way
of measuring software complexity, it does serve as a very basic yardstick for how complex a
program might be. Finding a good way to measure software complexity is beyond the scope
of this book. Instead, this book gives some suggestions on how to write correct programs.

3.1 Developing Software 6= Coding

From the experience of writing small programs, some students have the habit of “coding
→ testing→ debugging”. Unfortunately, this is the wrong approach to developing software.
Expert programmers use strategies to prevent, detect, and remove software bugs. Coding is
not developing software. Coding means typing statements in a text editor. Coding is only
one small part of developing software.

Before typing a single line of code, you first need to know why you are developing the
software. Perhaps you are working on homework assignments for a programming class. In

33

34 Intermediate C Programming

this case, you should ask the purposes of these assignments. In particular, there should
be some learning objectives. Without knowing the purposes, it is impossible to understand
how to evaluate software. This is increasingly important as software becomes more complex.
Complex software has many parts and you need to understand why these parts are needed
and how they affect each other. Developing software requires many steps before, during,
and after coding. The following gives a few principles for you.

3.1.1 Before coding

• Read the specification and understand the requirements.
• Consider possible inputs and expected outputs.
• Identify valid but unexpected inputs and the correct outputs. For example, when

writing a sorting program, what would the program do if the input is already sorted?
What would the program do if the same number occurs multiple times? Identifying
unexpected inputs is a key concern for developing reliable software.
• Identify invalid inputs and the ways to detect them. Consider the sorting program as

an example again. If the specification says valid inputs are positive integers. What
would the program do if the input contains floating-point numbers? What would the
program do if the input contains negative numbers? What would the program do if
the input contains symbols (such as !@#&)? Even when the input is invalid, your
program should never crash (for example, producing a segmentation fault). Besides
being incorrect, software that crashes is a sign of security risks.
• Think about the solution and sketch down an approach on paper.
• Draw block diagrams showing how information is exchanged among different parts of

the program.
• After you have a design, plan the implementation aspect of the program: How many

functions should be created? What does each function do? How many files are needed?
When you design a function, try to keep these two suggestions in mind: Each function
should do only one thing, and should consist of no more than 40 lines of code. This
number is not rigid: 45 lines are all right; 120 lines are too long. A general rule is that
the entire function should fit in your computer screen using a readable font size.
• If you have a detailed design, you will save time on coding and debugging.

3.1.2 During coding

• This may surprise you: If you want to finish the programs correctly and faster, write
more code. Write code that is not needed. Before you put the code for one requirement
into a larger program, write a small program to test your solution. This is called the
unit test. If you cannot make one function work, you will definitely be incapable of
making anything work after putting many functions together. After you have done
some parts of the programs, make sure these parts work before continuing. You need
to write additional code to test these parts, since the other parts are not ready yet. A
rule of thumb is this: For every line of code you have to write, you should write three
additional lines of code. This additional work helps you understand what you must
do and helps you test what you have done.
• Always use a text editor that automatically indents programs. Such an editor can help

you detect braces at wrong places. Why is indentation important? Because it is easier
to visually detect misaligned code. Using the right tools can save you valuable time.
• Read your code line by line before running any test case. If you have not tried this

method, you may be surprised at how effective this method can be. Reading code can
help you find problems that are difficult to find by testing. One example is:

Prevent, Detect, and Remove Bugs 35

i f (a > 0);1

{2

... // always runs , not controlled by the if condition3

}4

The semicolon ; ends the if condition. As a result, the code inside { and } is not
controlled by the if condition and always runs.
• Run some simple test cases in your head. If you do not understand what your program

does, the computer will not be able to do what you want.
• Write code to test whether certain conditions are met, before proceeding. Suppose

sorting is part of a program: Check whether the data is sorted before the program
does anything else.
• Avoid copying and pasting code; instead, refactor the code by creating a function

and, thus, avoiding duplication. If you need to make slight changes to the copied
code, use the function’s argument(s) to handle the differences. This is a tried-and-
true principle: Similar code invites mistakes. You will soon lose track of the number of
copies and the differences among similar code. It is difficult to maintain the consistency
of multiple copies of the code. You will likely find that your program is correct in some
situations and wrong in others. Finding and removing this type of bug can be very
time-consuming. Your best strategy is to avoid it in the first place. It is better to write
a program that is always wrong than a program that is sometimes right. If it is always
wrong, and the problems come from only a single place, you can focus on that place.
If the problems do not consistently appear and come from many possible places, it is
more difficult to identify and remove the mistakes.

• Use version control. Have you ever had an experience like this: “Some parts of the
program worked yesterday. I made some changes and nothing works now. I changed
so many places that I don’t remember exactly what I have changed.”? Version control
allows you to see the changes from the previous commit.

• Resolve all compiler warnings. Many studies have shown that warnings are likely to
be serious errors, even though they are not syntax errors. Some people ignore warning
messages, thinking that they can handle the warnings after they get their programs
to work. However, the warning messages frequently indicate the problems preventing
their programs from working.

3.1.3 After coding

Read your program after you think you have finished it. Check the common mistakes
described below. Do not rely on testing: Testing can tell you that the program does not
work; it cannot tell you that the program does work. It is possible that the test cases do not
cover all possible scenarios. It is usually difficult to design test cases that cover all possible
scenarios. For a complex program, covering all possible scenarios is usually impossible.

3.2 Common Mistakes

Here is a list of some common mistakes I have seen in the programs written by students
(sometimes even by myself). Many students assure me that they will never make these
mistakes. The reality is that people do make these mistakes, and more often than they

36 Intermediate C Programming

think. This section considers only coding mistakes, not design mistakes. Design mistakes
require a different book on the subject of designing software.

3.2.1 Uninitialized Variables

One common mistake is uninitialized variables. Some students think all variables are
initialized to zero automatically. This is wrong. Uninitialized variables store garbage values.
The values may be zero but there is no guarantee. This type of mistake is difficult to
discover via testing. Sometimes, the values may happen to be zero, leading you to think that
the program is correct. When the values are not zero, the programs have problems. Some
students think that initializing variables slows down a program—however, these nanoseconds
of delay are negligible. It is better to slow down your program by a few nanoseconds than
to spend hours debugging.

3.2.2 Wrong Array Indexes

For an array of n elements, the valid indexes are 0, 1, 2, ..., n − 1 and n is an invalid index.
When a program has a wrong index, the program may seem to work on some occasions,
but may crash on others. You do not want to write a program whose behavior depends on
luck.

3.2.3 Wrong Types

You can ride a bicycle. You can write with a pen. You cannot ride a pen. You cannot
write with a bicycle. In a program, types specify what can be done. You need to understand
and use types correctly. The trend of programming languages is to make types more restric-
tive and to prevent programmers from making accidental mistakes. Sometimes gcc treats
suspicious type problems as warnings. You should treat these warnings as serious mistakes.

3.3 Post-Execution and Interactive Debugging

To debug a program, you need a strategy. You need to divide the program into stages and
isolate the problems based on the stages. Ensure the program is correct in each stage before
integrating the stages. For example, consider a program with three stages: (i) reads some
integers from a file, (ii) sorts the integers, and (iii) saves the sorted integers to another file.
Testing each stage before integration is called unit testing. For unit tests, you often need to
write additional code as the “drivers” of a stage. For example, to test whether sorting works
without getting the data from a file, you need to write code that generates the data (maybe
using a random number generator). Debugging can be interactive or post-execution. If a
program takes hours, you may not want to debug the program interactively. Instead, you
may want the program to print debugging messages (this is called logging). The messages
help you understand what occurs during the long execution. Another situation is debugging
a program that communicates with another program that has timing requirements. For
example, you debug a program that communicates with another program through networks.
If you debug the program interactively and slow it down too much, the other program may
think the network is disconnected and stop communicating with your program. Yet another

Prevent, Detect, and Remove Bugs 37

scenario is that your program interfaces with the physical world (e.g., controlling a robot).
The physical world does not wait for your program and it cannot slow down too much.
Logging also slows down a program; thus, do not add excessive amounts of logging.

In many other cases, you can slow down your programs and debug the programs
interactively—run some parts of the programs, see the intermediate results, change the
programs, run them again, continue the process until you are convinced the programs are
correct. For interactive debugging, printing debugging messages is usually ineffective and
time-wasting. There are several problems with printing debugging messages for interactive
debugging:
• Code needs to be inserted for printing debugging messages . This can be a considerable

amount of effort. In most cases, the debugging messages must be removed later because
debugging messages should appear in neither the final code nor its output.
• If there are too few messages, there is insufficient information to help you determine

what is wrong.
• If there are too many messages, some messages may be irrelevant and should be

ignored. Getting the right amount of messages, not too few and not too many, can be
difficult.
• Worst of all, problems are likely to occur at unexpected places where no debugging

messages have been inserted. As a result, more and more debugging messages must
be added. This can be time-consuming and frustrating.

Instead of using debugging messages in interactive debugging, gdb (or DDD) is a better
tool in most cases. I have shown you some gdb commands. I will describe more commands
later in this book.

3.4 Separate Testing Code from Production Code

You should write programs that can detect their own bugs. If you want to check whether
an array is sorted, do not print the elements on screen and check by your eyes. Write a
function that checks whether an array is sorted. The code is usually not printing debugging
messages. Instead, write code that can help you debug without relying on your own eyes.

You should consider writing testing code before you write a program. This is a common
practice called test-driven development. How to write testing code? Many books have been
written about software testing. This section gives you one suggestion. Consider the following
two examples of testing your code. Suppose func is the function you want to test and
test func is the code for testing func.

func(arguments)

{

/* do work to get result */

/* test to check result */

}

test_func(arguments)

{

/* create arguments */

result = func(arguments);

/* check the result */

}

What is the difference between these two approaches? The first (located on the left) calls
the testing code inside a function of your program. In the second (located on the right),
the testing code is outside your program and the testing code calls func. This difference
is important because the first mixes the testing code with the actual code needed for your

38 Intermediate C Programming

program (sometimes called “production code”). As a result, it will be difficult for you to re-
move the testing code. The second approach separates the testing code from the production
code, so that you can easily remove the testing code later on. You should take the second
approach whenever you test your program.

Chapter 4

Pointers

4.1 Scope . 39
4.2 The Swap Function . 41
4.3 Pointers . 43
4.4 The Swap Function Revisited . 47
4.5 Type Errors . 50
4.6 Arrays and Pointers . 50
4.7 Type Rules . 54
4.8 Pointer Arithmetic . 55
4.9 Exercises . 59

4.9.1 Swap Function 1 . 59
4.9.2 Swap Function 2 . 59
4.9.3 Swap Function 3 . 60
4.9.4 Swap Function 4 . 60
4.9.5 Swap Function 5 . 61
4.9.6 15,552 Variations . 61

4.10 Answers . 62
4.10.1 Swap Function 1 . 62
4.10.2 Swap Function 2 . 63
4.10.3 Swap Function 3 . 63
4.10.4 Swap Function 4 . 63
4.10.5 Swap Function 5 . 63

4.1 Scope

Chapter 2 described several rules. One of those rules was that each function can see only
its own frame. This is called scope. A new scope is created every time a pair of { and } is
used. This could be inside of a function body, for example, an if statement, or a while loop.
The following example shows two scopes:

void f(int a, int b)1

{2

/* this is a scope , call it X */3

int i;4

for (i = 0; i < a + b; i ++)5

{6

/* this is another scope , call it Y */7

int j;8

}9

}10

39

40 Intermediate C Programming

In the scope marked X (in the comments), a and b are arguments and i is a local
variable. Another scope called Y is created inside of X. Scopes are always nested inside of
each other like this. Variables from outer scopes are still accessible, so scope Y can “see” a,
b, and i. A local variable j is created inside of scope Y and is accessible only inside scope
Y; scope X cannot “see” j.

The following example has three scopes: X, Y, and Z. The arguments a and b in f1

have nothing to do with the arguments of a and b in f2 because they are in different and
non-overlapping scopes: f1 is not nested in f2 or vice versa.

The variable j is in the inner scope, and can only be “seen” between the { and } of the
for loop.

void f1(int a, int b)1

{2

/* this is a scope , call it X */3

int i;4

for (i = 0; i < a + b; i ++)5

{6

/* this is another scope , call it Y */7

int j;8

}9

}10

11

void f2(int a, int b)12

{13

/* this is a scope , call it Z */14

f1(a + b, a - b);15

/* RL A */16

}17

It is legal to create another variable of the same name in an inner scope, like u.

void f1(int u, int v)1

{2

/* this is a scope , call it X */3

int i;4

for (i = 0; i < u + v; i ++)5

{6

/* this is another scope , call it Y */7

int j;8

int u; /* shadow variable */9

}10

}11

In the inner scope Y, we create a new variable called u. Please note that Y already has
an argument called u. By adding the type int in front of u, a new variable is created. This
function now has two variables both called u in the overlapping scopes (Y is nested inside
of X). This makes the u in Y a shadow variable of the u in X. These two variables have two
different memory addresses. Modifying the u in scope Y does not change the u in scope
X. Shadow variables are considered bad programming style because they make programs
difficult to understand, and can introduce subtle errors. Consider the following example:

void f1(int u, int v)1

{2

/* this is a scope , call it X */3

Pointers 41

int i;4

u = 27;5

for (i = 0; i < u + v; i ++)6

{7

/* this is another scope , call it Y */8

int u; /* shadow variable because of int */9

u = 5;10

}11

/* u is 27 even though it was assigned to 5 two lines12

earlier */13

}14

The value of u is 5 just above the closing brace (line 11) that encloses scope Y. After
leaving Y, the value of u is 27 because the outer u was never changed. This can make the
program confusing, and confusing programs are error-prone. Fortunately most compilers
make it is easy to detect shadow variables. For example, gcc compiler warns about shadow
variables when you add -Wshadow to gcc.

4.2 The Swap Function

A function can return only one value. The returned value can be used to modify one
thing in the caller. For example,

int f1(int a, int b)1

{2

return (a + b);3

}4

5

void f2(void)6

{7

int s;8

s = f1(2, 37);9

/* RL A */10

}11

In the function f2, we see s becomes the sum of 2 and 37. By calling f1 we are able
to change one variable in the caller f2. What can we do if we want to change two or more
variables in the caller? Suppose we want to write a “swap function”,

void swap(int x, int y)1

{2

3

/* do something to swap x and y */4

5

}6

7

void f2(void)8

{9

int a = 2;10

int b = 37;11

42 Intermediate C Programming

swap(a, b);12

/* RL A */13

}14

Can this swap function work?

void swap(int x, int y)1

{2

int z = x;3

x = y;4

y = z;5

}6

When the swap function is called, the values of a and b are copied to the arguments x and
y. The call stack is shown below.

Frame Symbol Address Value

swap

z 106 -
y 105 37
x 104 2
Return Location 103 line 13

f2
b 102 37
a 101 2

The value of x is stored in a temporary variable z. Then y’s value is assigned to x and
z’s value is assigned to y. After these three steps, x has y’s old value and y has x’s old value
(through z). After finishing line 5 in swap and before the top frame is popped, this is the
call stack:

Frame Symbol Address Value

swap

z 106 2
y 105 2
x 104 37
Return Location 103 line 13

f2
b 102 37
a 101 2

Inside swap, the values of x and y have been swapped. As explained in Chapter 2, when
swap finishes, the top frame is popped. After the top frame is popped, the call stack becomes

Frame Symbol Address Value

f2
b 102 37
a 101 2

The swap function was called and finished, and the values of a and b have not changed.
This swap function does not work. C programs use “call-by-value” when calling functions
That means that values are copied from the caller to the arguments of the called function
(i.e., callee). This is the only way to call functions in C. Java and C++ have call-by-value
and call-by-reference but C only uses call-by-value.

Does this mean it is impossible to write a swap function?

Pointers 43

4.3 Pointers

C solves this problem by creating the concept of pointers. A pointer is a variable (or an
argument) whose value is a memory address. To create a pointer, add * after the type.

type * ptr; // ptr is a pointer , meaning its value is a1

memory address2

This creates a pointer called ptr. Its value is an address. At that address is stored a
value of the given type. This may seem abstract so let us see some concrete examples:

int * iptr;1

char * cptr;2

double * dptr;3

name value at that address
iptr an address an integer
cptr an address a character
dptr an address a double-precision floating-point number

In each case, the pointer stores a memory address. Chapter 2 said programmers cannot
control addresses. How can a program obtain valid addresses? C provides special syntax for
precisely that purpose: by adding an & in front of a variable. For example,

int a = -61; // a is an integer1

int * iptr; // iptr is a pointer2

iptr = & a; // iptr’s value is a’s address3

Symbol Address Value
iptr 101 100
a 100 −61

Section 2.3.6 prints the addresses of two variables a and c. It shows that the addresses
change when the same program runs again. By using an ampersand (&) in front of a, iptr’s
value changes every time the program runs. Please remember that a programmer can
change variables’ values but a programmer cannot change variables’ addresses.
You may want to ask why this example uses 100 for a’s address but the addresses in
Section 2.3.6 are much larger values. In order to make the book easier to read, the book
uses small addresses instead of the much larger addresses that are common on modern
computers.

How are pointers useful? First, just like any other variable type, two pointers can have
the same value.

int a = 632;1

int c; /* c’s value is garbage now */2

c = a; /* c’s value is the same as a’s value */3

int * iptr1; /* iptr1’s value is garbage now */4

int * iptr2; /* iptr2’s value is garbage now */5

iptr1 = & a; /* iptr1’s value is a’s address */6

iptr2 = iptr1; /* iptr2 and iptr1 have the same value */7

44 Intermediate C Programming

After executing the first line, an integer called a has been created and its value is 632.
The second line creates another integer variable called c and its value is not defined yet.
This is the snapshot of the call stack after finishing line 2.

Symbol Address Value
c 101 garbage
a 100 632

The third line makes c’s value the same as a’s value.

Symbol Address Value
c 101 632
a 100 632

The fourth and the fifth lines create two pointers. Their values are currently undefined.

Symbol Address Value
iptr2 103 garbage
iptr1 102 garbage
c 101 632
a 100 632

The sixth line assigns a’s address to iptr1’s value.

Symbol Address Value
iptr2 103 garbage
iptr1 102 100
c 101 632
a 100 632

The seventh line assigns iptr1’s value, 100, to iptr2’s value.

Symbol Address Value
iptr2 103 100
iptr1 102 100
c 101 632
a 100 632

The third and the seventh lines are similar: The third line assigns a’s value to c’s value;
the seventh line assigns the value of iptr1 to the value of iptr2.

A second way to use pointers is to retrieve the value stored at their addresses.

int a = 632;1

int * iptr;2

int c;3

iptr = & a;4

c = * iptr;5

/* read iptr’s value as an address , go to that address ,6

read the value at that address , assign the value to c */7

printf("%d", * iptr);8

* iptr = -84;9

Pointers 45

Shown below is the call stack after the program finishes the fourth line.

Symbol Address Value
iptr 102 100
c 101 garbage
a 100 632

The fifth line does the following things:
1. Takes iptr’s value as an address. The value is 100.
2. Goes to that address (100).
3. Reads the value at that address and it is 632.
4. Assigns 632 to c.
After the fifth line, the call stack becomes:

Symbol Address Value
iptr 102 100
c 101 632
a 100 632

This is the rule: If a program has something like the following:

= * iptr; // iptr is a pointer1

the program will
1. take iptr’s value as an address.
2. go to that address.
3. read the value at that address.
4. assign the value to the variable at the left.

This rule is applicable if * iptr is at the right hand side (RHS) of the assignment sign (=).
This is also called dereferencing a pointer. The assignment sign = is not strictly necessary,
in which case the rule still works without part 4 of the assignment. For example, the eighth
line of the code above prints 632.

The emphasis on the “right hand side” is important. When * iptr is on the left hand
side (LHS), it works in a similar but opposite way. For example, the last line of code above
does the following:

1. Takes iptr’s value as an address and it is 100.
2. Goes to that address (100).
3. Modifies the value at address 100 to −84.
Thus, after the last line, the call stack becomes

Symbol Address Value
iptr 102 100
c 101 632
a 100 −84

Many students find pointers confusing at first. This confusion is well justified. The same
symbol * has different meanings. The symbol also means multiplication when it is between
two numeric values (integer, float, double). The following table summarizes the different
meanings:

It is time to test your understanding of the different usages of *. Draw the call stack for
the following code snippet:

46 Intermediate C Programming

Example Meaning
1. int * iptr; Create a pointer variable. ptr’s value is an address. An integer is

stored at that address.
* is after the type (int in this case)

2. iptr = & val Assign val’s address to ptr’s value.
This is how to assign a valid address to ptr; note that * is not
used.

3. = * ptr (right hand side of assignment, RHS) Take ptr’s value as an address
and read the value at that address.
= is not always necessary, for example, when printing or calling a
function.

4. * ptr = (left hand side of assignment, LHS) Take ptr’s value as an address
and modify the value at that address.

5. 5 * 17 Multiplication: 5 * 17 is 85.
In this case, * is between two numbers

TABLE 4.1: Different usages of * in C programs. Please notice that ptr = and * ptr =

have different meanings.

int a = 21;1

int c = -4;2

int * ptr;3

ptr = & a;4

* ptr = 7;5

c = * ptr;6

* ptr = a * c;7

After executing the first three lines, the call stack is shown below.

Symbol Address Value
ptr 102 garbage
c 101 −4
a 100 21

The fourth line assigns a’s address to ptr’s value.

Symbol Address Value
ptr 102 100
c 101 −4
a 100 21

The fifth line has * ptr at the left hand side of the assignment sign. This assigns value
7 to the address 100.

Symbol Address Value
ptr 102 100
c 101 −4
a 100 21 → 7

The sixth line reads the value at address 100; the value is 7. This value is assigned to c.
The call stack is shown below.

Pointers 47

Symbol Address Value
ptr 102 100
c 101 −4 → 7
a 100 7

The seventh line reads the values of a and c; both are 7. The symbol * is used twice.
At the right hand side, * means multiplication and the result is 49. Then, 49 is assigned to
the value at address 100. This changes a’s value to 49.

Symbol Address Value
ptr 102 100
c 101 7
a 100 7 → 49

4.4 The Swap Function Revisited

Section 4.2 explains that

void swap(int x, int y)1

{2

int z = x;3

x = y;4

y = z;5

}6

does not work because the changes to x and y are lost after the swap function finishes (i.e.,
returns) and the top frame is popped. How do you write a correct swap function? The
swap function needs to change the values of a and c. Their addresses reside outside of the
function. To do so, swap must have the addresses of a and c.

void swap(/* the addresses of a and c */)1

{2

3

4

5

}6

7

void f(void)8

{9

int a = 83;10

int c = -74;11

swap(/* the addresses of a and c */);12

/* RL */13

}14

Since the function f must provide the addresses of a and c, the swap function’s arguments
must be pointers that store these addresses.

void swap(int * k, int * m)1

{2

48 Intermediate C Programming

3

4

5

}6

7

void f(void)8

{9

int a = 83;10

int c = -74;11

swap(& a, & c);12

/* RL */13

}14

This is the call stack when starting the swap function.

Frame Symbol Address Value

swap
m 104 101
k 103 100

Return Location 102 line 13

f
c 101 −74
a 100 83

The following code implements the swap function:1

void swap (int * k, int * m)2

{3

int s = * k;4

* k = * m;5

* m = s;6

}7

8

void f(void)9

{10

int a = 83;11

int c = -74;12

swap (& a, & c);13

}14

The third line reads the value at the address of 100 and stores the value in s.

Frame Symbol Address Value

swap
s 105 83
m 104 101
k 103 100

Return Location 102 line 13

f
c 101 −74
a 100 83

The fourth line reads the value stored at address 101; the value is −74. This value is
stored at the address 100.

Pointers 49

Frame Symbol Address Value

swap
s 105 83
m 104 101
k 103 100

Return Location 102 line 13

f
c 101 −74
a 100 −74

The fifth line assigns 83 to the value at address 101.

Frame Symbol Address Value

swap
s 105 83
m 104 101
k 103 100

Return Location 102 line 13

f
c 101 83
a 100 −74

After the swap function finishes, the top frame is popped.

Frame Symbol Address Value

f
c 101 83
a 100 −74

Note that the values of a and c have been changed. Pointers are a central feature of C
programming, and they must be handled carefully. The swap function should be understood
thoroughly, since it is a simple example of using pointers. You should understand how to
call swap, how it is implemented, and why it is implemented in the way that it is.

Section 2.4 says a function can see only its own frame. However, the swap function
modifies the values of a and c even though a and c are in a different frame. Does this mean
the rule in Section 2.4 is violated? The answer is no. The swap function still cannot access
a or c directly. The swap function can access a or c indirectly because k and m store the
addresses of a and c. Through pointers, a function can access (i.e., read or write)
the values of variables in another frame.

By using pointers, the swap function can read or write the values in f’s frame. Is it
possible for f to use pointers to read or write variables in swap’s frame? We can illustrate
this question with a simple example. Will the following code change m’s value from 0 to 7?

int * f1(void)1

{2

int m = 0;3

return & m;4

}5

6

void f2(void)7

{8

int * iptr = f1();9

/* RL */10

* iptr = 7;11

}12

The answer is no: m exists only inside of f1’s frame.
• Before calling f1, m does not exist.
• When running the code in f1, the program executes the statements in f1, not in f2.

50 Intermediate C Programming

• After f1 finishes, the program continues from the return location (line 10). The top
frame has been popped and m no longer exists.

Hence, it is impossible for f2 to modify m. In fact, most compilers will warn you that the
fourth line is likely a mistake. Using pointers to read or write only works in one direction.
If f2 calls f1, f1 can read or write values in f2’s frame but f2 cannot read or write values
in f1’s frame. This rule can be generalized: Through pointers, a function can read or write
values stored in the function’s frame or the stack frames below it. It is impossible to read
or write values in a frame that is above the function’s frame.

4.5 Type Errors

Every time I teach pointers, I get questions like this: What happens if the types are
mixed up? For example,

int a = 5;1

char * cptr;2

cptr = & a;3

The type of a is int and cptr is a pointer to char. What will happen? The simple answer
is don’t do it. Mixing types is asking for trouble. In this case, the program will assume
that there is a char variable at the address of a, when clearly there is an int variable there.
It makes no sense. The precise value of * cptr will depend on the type of hardware that
is running the program. Fortunately, gcc will tell you there is a problem by adding -Wall

after calling gcc.
How about this?

int a = 5;1

int * iptr;2

iptr = a;3

* iptr = -12;4

This is also problematic. If we manage to convince the compiler to actually compile it, we
will end up assigning 5 to iptr. Although this makes no sense, it will not cause problems per
se. The real problem comes when we attempt to use the pointer. When creating pointers,
we almost always want to dereference them at some stage. That is, we add * in front of the
pointer to read from or to write to the value stored at address stored in the pointer. The
third line assigns 5 (a’s value, not a’s address) to iptr’s value. Now adding * in front of
iptr will cause the program to try to read from or write to the value at address 5. However,
programmers have no control over the specific addresses a program uses. The fourth line
intends to write −12 to the value at address 5. This is not a’s address—a’s address is
& a—and a problem will ensue. In fact, modern operating systems will stop the program
from doing it. Address 5 is almost certainly inaccessible to your program, and attempting
to read from or write to the value at this address will cause the operating system to stop
the program.

Pointers 51

4.6 Arrays and Pointers

What is an array? Consider the following example:

int arr [5];1

This line of code creates an array of 5 elements; each element is an integer. The elements
have not been initialized so the values are garbage. The following example shows how to
write to the array elements.

arr [0] = 6; // assign 6 to the first element1

arr [1] = -11; // assign -11 to the second element2

arr [2] = 9; // assign 9 to the third element3

Please remember that an array’s indexes always start from zero.
Arrays have a special relationship with pointers, and in many cases are indistinguishable

from pointers. We can illustrate this by explaining the specific meaning of the third line
above. This line does three things:

1. Interprets arr’s value as a pointer whose value is the address of the first element of
the array.

2. Finds the address of two elements after the address of the first element to get a new
address. Here, the value 2 is the index inside [] and is called address offset.

3. Modifies the value at that address to 9.
How about the following example?

int c; // create an integer variable called c1

c = arr [1]; // read the value of the second element2

// and assign it to c3

The second line does four things:
1. Interprets arr’s value as a pointer whose value is the address of the first element
2. Finds the address of one element after that address to get a new address. Here, the

value 1 is the address offset.
3. Reads the value at that address and it is −11.
4. Writes −11 to c’s value.
Note that arr can always be interpreted as a pointer whose value is the address of the

first element of the array. The first element is arr[0]. Thus, the following equality is always
true:

arr == & arr [0]1

In Section 2.3.5, we noted that the addresses of array elements are contiguous. If arr
stores the address of the first element, a compiler can easily calculate the address of any
element. The address of arr[k] is the address of arr[0] plus k × the size of each element.
For the time being, let’s assume that each element occupies only one unit of memory space.
We will examine the size of data in a later chapter.

Since arr is the address of the first element, calling a function with arr allows the called
function to access the array’s elements (both reading and writing). We can use a pointer
type as the argument for the array. The following example adds the elements in an array:

int sumarr(int * intarr , int len)1

{2

int ind;3

int sum2 = 0; // remember to initialize to zero4

52 Intermediate C Programming

for (ind = 0; ind < len; ind ++)5

{6

sum2 += intarr[ind];7

}8

return sum2;9

}10

void f(void)11

{12

int sum = 0;13

int arr [5];14

arr[0] = 4;15

arr[1] = -7;16

arr[2] = 2;17

arr[3] = 3;18

arr[4] = 9;19

sum = sumarr(arr , 5);20

/* RL */21

printf("sum = %d\n", sum);22

}23

The function f2 creates arr, an array of five elements and sum, an integer. This is the
call stack before calling sumarr.

Frame Symbol Address Value

f

arr[4] 105 9
arr[3] 104 3
arr[2] 103 2
arr[1] 102 −7
arr[0] 101 4
sum 100 0

Function f calls function sumarr with two arguments: arr and 5. The former is the
address of arr[0]. This is the call stack after starting function sumarr before the fifth line.

Frame Symbol Address Value

sumarr

sum2 111 0
ind 110 garbage
len 109 5

intarr 108 101
value address 107 100

return location 106 line 21

f

arr[4] 105 9
arr[3] 104 3
arr[2] 103 2
arr[1] 102 −7
arr[0] 101 4
sum 100 0

Please pay special attention to the value of intarr at address 108. The value is 101
because the address of the first element, i.e., & arr[0], is 101. In C programs, an array
itself does not provide information about the number of elements. As a result, when calling
sumarr, another argument is needed for the number of elements. Because intarr has the
address of the array’s first element, function sumarr can read the array’s elements even

Pointers 53

though the array is stored in a different frame. The for loop adds the elements’ values and
stores the result in sum2. This is the call stack after finishing the for loop.

Frame Symbol Address Value

sumarr

sum2 111 0 → 11
ind 110 5
len 109 5

intarr 108 101
value address 107 100

return location 106 line 21

f

arr[4] 105 9
arr[3] 104 3
arr[2] 103 2
arr[1] 102 −7
arr[0] 101 4
sum 100 0

The value of sum2 is then written to the value at address 100 (sum’s address). This is
the call stack after function sumarr has finished.

Frame Symbol Address Value

f

arr[4] 105 9
arr[3] 104 3
arr[2] 103 2
arr[1] 102 −7
arr[0] 101 4
sum 100 0 → 11

Because an array is passed as a pointer to the first element, a function can modify the
values of an array in another frame. Consider this example:

void incrarr(int * intarr , int len)1

{2

int ind;3

for (ind = 0; ind < len; ind ++)4

{5

intarr[ind] ++;6

}7

}8

void f(void)9

{10

int arr [5];11

arr[0] = 4;12

arr[1] = -7;13

arr[2] = 2;14

arr[3] = 3;15

arr[4] = 9;16

incrarr(arr , 5);17

/* RL */18

}19

This is the call stack after entering incrarr before executing the for loop.

54 Intermediate C Programming

Frame Symbol Address Value

sumarr

ind 110 garbage
len 107 5

intarr 106 100
return location 105 line 18

f

arr[4] 104 9
arr[3] 103 3
arr[2] 102 2
arr[1] 101 −7
arr[0] 100 4

What is the difference between the following two statements?

a ++; // assume a is an integer1

// same as a = a + 1;2

intarr[ind] ++; // assume intarr[ind] is an integer3

// same as intarr[ind] = intarr[ind] + 14

The first line executes the following steps:
1. Reads a’s value.
2. Increments the value by one.
3. Writes the incremented value back to a.
The second statement does something similar:

1. Reads intarr[ind]’s value.
2. Increments the value by one.
3. Writes the incremented value back to intarr[ind].
Because intarr is the address of the array’s first element, the function incrarr can

read and modify the array’s elements even though the array is stored in a different frame.
This is the call stack after incrarr has finished, and its frame has been popped.

Frame Symbol Address Value

f

arr[4] 104 10
arr[3] 103 4
arr[2] 102 3
arr[1] 101 −6
arr[0] 100 5

4.7 Type Rules

Here are some rules about types:
• If var’s type is t, then & var’s type is t *.
• If ptr’s type is t *, then * ptr’s type is t.
• If arr is an array of type t, then each element stores a value of type t. Thus, the type

of an element (such as arr[1]) is t. Please notice the presence of an index.
• If arr is an array of type t, then arr’s (without any index) type is t * because arr

is equivalent to & arr[0].
• An array’s name is always a pointer. If arr is an array of type t and t * ptr

is a pointer of type t, then ptr = arr is a valid assignment. It is equivalent to
ptr = & arr[0], or assigning the address of the first element to ptr.

Pointers 55

• Pointers are not necessarily arrays. For example, t * ptr creates a pointer of type t

and it is not related to any array. Hence, arr = ptr can be a dangerous assignment
because operations like arr[1] may read from (or write to) an invalid address.

4.8 Pointer Arithmetic

Pointers can be used to iterate through (visit) the elements of an array. This is called
pointer arithmetic. Consider the following example.

// arithmetic1.c1

#include <stdio.h>2

#include <stdlib.h>3

int main (int argc ,char * * argv)4

{5

int arr1[] = {7, 2, 5, 3, 1, 6, -8, 16, 4};6

char arr2[] = {’m’, ’q’, ’k’, ’z’, ’%’, ’>’};7

double arr3[] = {3.14, -2.718, 6.626, 0.529};8

int len1 = s i z eo f (arr1) / s i z eo f (int);9

int len2 = s i z eo f (arr2) / s i z eo f (char);10

int len3 = s i z eo f (arr3) / s i z eo f (double);11

printf("lengths = %d, %d, %d\n", len1 , len2 , len3);12

int * iptr = arr1;13

char * cptr = arr2;14

double * dptr = arr3;15

printf("values = %d, %c, %f\n", * iptr , * cptr , * dptr);16

iptr ++;17

cptr ++;18

dptr ++;19

printf("values = %d, %c, %f\n", * iptr , * cptr , * dptr);20

iptr ++;21

cptr ++;22

dptr ++;23

printf("values = %d, %c, %f\n", * iptr , * cptr , * dptr);24

iptr ++;25

cptr ++;26

dptr ++;27

printf("values = %d, %c, %f\n", * iptr , * cptr , * dptr);28

return EXIT_SUCCESS;29

}30

This is the output of this program:

lengths = 9, 6, 4

values = 7, m, 3.140000

values = 2, q, -2.718000

values = 5, k, 6.626000

values = 3, z, 0.529000

Lines 6 to 8 create three arrays, one of integers, one of characters, and one of double-
precision floating point numbers. In a C program, you can create a constant array without

56 Intermediate C Programming

giving the size, by putting nothing between [and]. The compiler will automatically cal-
culate the array’s size. Lines 9 to 11 calculate the lengths of the three arrays. So far we
use the same size for different types (int, char, double) but different types actually take
up different amounts of memory, and therefore have different sizes. Thus, these three lines
divide the array sizes by the types’ sizes in order to get the numbers of the elements. Line
12 prints the lengths. As you can see, the program prints the correct lengths. This method
for calculating an array’s size is valid only for constant arrays. If an array is created using
malloc, this method will not work. A later chapter will explain malloc.

Lines 13 to 15 assign the addresses of the first element in each array to the pointers.
These three lines are equivalent to

int * iptr = & arr1 [0];1

char * cptr = & arr2 [0];2

double * dptr = & arr3 [0];3

Do not mix the pointer types. For example, the following statements are wrong:

int * iptr = arr2;1

int * iptr = arr1 [1];2

The first is wrong because arr2 is an array of char. The second is wrong because arr1[1]

is an int, and is not an address.
Line 16 prints the values stored at the corresponding addresses. The printed values are

the first elements. Lines 17 to 19 are called pointer arithmetic. Each pointer is advanced by
one. This means specifically, that each pointer now points to the next element of the array.
Line 20 prints the values stored at the corresponding addresses. The printed values are the
second elements. Lines 21 to 23 make each pointer point to the next element. Line 24 prints
the values stored at the corresponding addresses. The printed values are the third elements.
Even though different types have different sizes in memory, the compiler will automatically
move the pointers to correctly point to the next elements.

The sizes of types are not fixed by the C language, and can vary depending on the
computer, operating system, and specific compiler options chosen to compile the code. The
following program prints the sizes of various types:

// arithmetic2.c1

#include <stdio.h>2

#include <stdlib.h>3

int main (int argc ,char * * argv)4

{5

int arr1[] = {7, 2, 5, 3, 1, 6, -8, 16, 4};6

char arr2[] = {’m’, ’q’, ’k’, ’z’, ’%’, ’>’};7

double arr3[] = {3.14, -2.718, 6.626, 0.529};8

long int addr10 = (long int) (& arr1 [0]);9

long int addr11 = (long int) (& arr1 [1]);10

long int addr12 = (long int) (& arr1 [2]);11

printf("%ld , %ld , %ld\n", addr12 , addr11 , addr10);12

printf("%ld , %ld\n", addr12 - addr11 , addr11 - addr10);13

long int addr20 = (long int) (& arr2 [0]);14

long int addr21 = (long int) (& arr2 [1]);15

long int addr22 = (long int) (& arr2 [2]);16

printf("%ld , %ld , %ld\n", addr22 , addr21 , addr20);17

printf("%ld , %ld\n", addr22 - addr21 , addr21 - addr20);18

long int addr30 = (long int) (& arr3 [0]);19

long int addr31 = (long int) (& arr3 [1]);20

Pointers 57

long int addr32 = (long int) (& arr3 [2]);21

printf("%ld , %ld , %ld\n", addr32 , addr31 , addr30);22

printf("%ld , %ld\n", addr32 - addr31 , addr31 - addr30);23

return EXIT_SUCCESS;24

}25

The output of the program is:

140735471859144, 140735471859140, 140735471859136

4, 4

140735471859186, 140735471859185, 140735471859184

1, 1

140735471859120, 140735471859112, 140735471859104

8, 8

We have already discussed lines 6 to 8, but what do lines 9 to 11 do? At the right side
of the assignment, & arr1[0] gets the address of the first element of arr1. This address
is assigned to addr10. Because this code is compiled on a 64-bit computer, the memory
addresses use 64 bits, and require the long int type to store the addresses. We need to use
some special syntax (called a type cast) to tell the compiler to store the memory address
inside an integer. This is why we have (long int) after =. In general, storing memory
addresses in integers is a very bad idea, because it can lead to subtle problems when the
code is compiled under different circumstances. Using (long int) is telling the compiler “I
know this is wrong, but trust me, I want to do it.” The purpose of this program is to show
you that the sizes of different types can be different.

Lines 10 and 11 get the addresses of the second, and the third elements of the array. Line
12 prints the values of these long integers. In printf, %ld is used to print a longer integer.
The value changes if you execute the program again. However, line 13 always prints 4, 4

meaning that the addresses of two adjacent elements differ by 4. This means each integer
uses 4 bytes of memory. Line 17 prints some addresses and they change when the program
is executed again. Line 18 always prints 1, 1 meaning that the addresses of two adjacent
elements differ by 1. Thus, each character needs 1 byte of memory. Line 23 always prints
8, 8 meaning that the addresses of two adjacent elements differ by 8. Thus, each double

needs 8 bytes of memory.
The next example combines these two programs.

// arithmetic3.c1

#include <stdio.h>2

#include <stdlib.h>3

int main (int argc ,char * * argv)4

{5

int arr1[] = {7, 2, 5, 3, 1, 6, -8, 16, 4};6

char arr2[] = {’m’, ’q’, ’k’, ’z’, ’%’, ’>’};7

double arr3[] = {3.14, -2.718, 6.626, 0.529};8

int * iptr = & arr1 [3];9

printf("%d\n", * iptr);10

long int addr13 = (long int) iptr;11

iptr --;12

printf("%d\n", * iptr);13

long int addr12 = (long int) iptr;14

printf("addr13 - addr12 = %ld\n", addr13 - addr12);15

printf("=====================================\n");16

58 Intermediate C Programming

17

char * cptr = & arr2 [1];18

printf("%c\n", * cptr);19

long int addr21 = (long int) cptr;20

cptr ++;21

printf("%c\n", * cptr);22

long int addr22 = (long int) cptr;23

printf("addr22 - addr21 = %ld\n", addr22 - addr21);24

printf("=====================================\n");25

26

double * dptr = & arr3 [2];27

printf("%f\n", * dptr);28

long int addr32 = (long int) dptr;29

dptr --;30

printf("%f\n", * dptr);31

long int addr31 = (long int) dptr;32

printf("addr32 - addr31 = %ld\n", addr32 - addr31);33

return EXIT_SUCCESS;34

}35

This is the output of the program:

3

5

addr13 - addr12 = 4

=====================================

q

k

addr22 - addr21 = 1

=====================================

6.626000

-2.718000

addr32 - addr31 = 8

Line 9 assigns the address of arr1[3] to iptr and line 10 prints the value stored at that
address. As you can see in this example, iptr does not have to start from the first element
of the array. Line 11 stores iptr’s value in addr13. Please remember that iptr’s value is
an address. Line 12 decrements iptr’s value and line 13 prints the value at address. The
value is 5, the same as arr1[2]. Line 14 stores iptr’s value in addr12. Line 15 shows the
differences of the two addresses stored in addr13 and addr12 and the difference is 4, not 1.

What does this mean? Even though line 12 decrements iptr by one, the compiler ac-
tually decreases iptr’s value by 4 because the size of an integer is 4. In other words, the
specific change in iptr’s value depends on the size of the type being pointed to. The outputs
for the other two arrays further illustrate this point. Line 24 prints 1 and line 33 prints 8
because of the sizes of the types being pointed to. This explains why mixing types can be
problematic. For example,

int * iptr = arr2; // arr2 is a char array1

int * iptr = arr3; // arr3 is a double array2

Programs have odd behavior when the types are mixed like this.

Pointers 59

4.9 Exercises

4.9.1 Swap Function 1

Does this program have any syntax problems because of wrong types (such as assigning
an integer to a pointer’s value)? Will this function actually swap the values of u and t?
What is the program’s output? Please draw the call stack and explain.

// swap1.c1

#include <stdio.h>2

#include <stdlib.h>3

void swap1 (int a , int b)4

{5

int k = a;6

a = b;7

b = k;8

}9

int main (int argc ,char * * argv)10

{11

int u;12

int t;13

u = 17;14

t = -96;15

printf ("before swap1: u = %d , t = %d \n" , u , t);16

swap1 (u , t);17

printf ("after swap1: u = %d , t = %d \n" , u , t);18

return EXIT_SUCCESS;19

}20

4.9.2 Swap Function 2

How about this program?

// swap2.c1

#include <stdio.h>2

#include <stdlib.h>3

void swap2 (int * a , int * b)4

{5

int * k = a;6

a = b;7

b = k;8

}9

10

int main (int argc ,char * * argv)11

{12

int u;13

int t;14

u = 17;15

t = -96;16

printf ("before swap2: u = %d , t = %d \n" , u , t);17

60 Intermediate C Programming

swap2 (& u , & t);18

printf ("after swap2: u = %d , t = %d \n" , u , t);19

return EXIT_SUCCESS;20

}21

4.9.3 Swap Function 3

How about this program?

// swap3.c1

#include <stdio.h>2

#include <stdlib.h>3

4

void swap3 (int * a, int * b)5

{6

int k = * a;7

a = b;8

* b = k;9

}10

11

12

int main (int argc ,char * * argv)13

{14

int u;15

int t;16

u = 17;17

t = -96;18

printf ("before swap3: u = %d , t = %d \n" , u , t);19

swap3 (& u , & t);20

printf ("after swap3: u = %d , t = %d \n" , u , t);21

return EXIT_SUCCESS;22

}23

4.9.4 Swap Function 4

How about this program?

// swap4.c1

#include <stdio.h>2

#include <stdlib.h>3

4

void swap4 (int * a, int * b)5

{6

int k = * a;7

* a = * b;8

* b = * k;9

}10

11

12

int main (int argc ,char * * argv)13

{14

Pointers 61

int u;15

int t;16

u = 17;17

t = -96;18

printf ("before swap4: u = %d , t = %d \n" , u , t);19

swap4 (& u , & t);20

printf ("after swap4: u = %d , t = %d \n" , u , t);21

return EXIT_SUCCESS;22

}23

4.9.5 Swap Function 5

How about this program?

// swap5.c1

#include <stdio.h>2

#include <stdlib.h>3

4

void swap5 (int * a, int * b)5

{6

int k = a;7

a = b;8

b = k;9

}10

11

int main (int argc ,char * * argv)12

{13

int u;14

int t;15

u = 17;16

t = -96;17

printf ("before swap5: u = %d , t = %d \n" , u , t);18

swap5 (& u , * t);19

printf ("after swap5: u = %d , t = %d \n" , u , t);20

return EXIT_SUCCESS;21

}22

4.9.6 15,552 Variations

There are many variations of the swap function. To be specific, there are 15,552 variations
and only one of them is correct. Some variations have syntax errors (wrong types) and some
of them do not swap the values in the main function. Let me explain why there are so many
variations. First, this is the correct swap function and the correct way to call it:

void swap (int * k, int * m)1

{2

int s;3

s = * k;4

* k = * m;5

* m = s;6

}7

62 Intermediate C Programming

8

void f(void)9

{10

int a = 83;11

int c = -74;12

swap (& a, & c);13

}14

How do we get 15,552 variations? In the first line, there are two options for k:
1. int k

2. int * k

int & k is illegal so it is not considered.
Similarly, there are two options for m and two options for s. So far, there are 8 variations

of the function up to the third line. Next, consider the number of options for s = k at the
fourth line; there are six options:

1. s = * k;

2. s = & k;

3. s = k;

4. * s = * k;

5. * s = & k;

6. * s = k;

& s = is illegal so it is not considered.
Similarly, there are also six options for k = m and another six options for m = s. So far

there are 8 × 6 × 6 × 6 = 1,728 variations for swap function.
From the main function, calling swap has three options for using a in the thirteenth line:
1. a

2. & a

3. * a

Similarly, there are another three options in using c. Thus, in total, there are 1,728 × 3
× 3 = 15,552 variations.

Among all these variations, if the swap function is called without using addresses, the
changes are lost when the swap function finishes. In other words, regardless what happens
inside swap, calling swap in this way,

swap (a, c);1

is always wrong.

4.10 Answers

4.10.1 Swap Function 1

There are no syntax errors or warnings but this function does not swap u and k. This is
the output of the program:

before swap1: u = 17 , t = -96

after swap1: u = 17 , t = -96

Pointers 63

4.10.2 Swap Function 2

There are no syntax errors or warnings but this function does not swap u and k. This is
the call stack after finishing line 7, before swap2 finishes. The values of a and b are swapped
but the values of u and t remain unchanged.

Frame Symbol Address Value

swap

k 105 100
b 104 100
a 103 101

Return Location 102 line 18

main
t 101 −96
u 100 17

This is the output of the program:

before swap1: u = 17 , t = -96

after swap1: u = 17 , t = -96

4.10.3 Swap Function 3

There are no syntax errors or warnings. The problem is the seventh line. This line assigns
b’s value to a’s value. This is the call stack after finishing the seventh line:

Frame Symbol Address Value

swap

k 105 17
b 104 101
a 103 101

Return Location 102 line 18

main
t 101 −96
u 100 17

This is the output of the program. Both u and t are 17, and the value −96 has been
discarded.

before swap3: u = 17 , t = -96

after swap3: u = 17 , t = 17

4.10.4 Swap Function 4

The eighth line has a problem: k is an integer and adding * in front of k is invalid. This
program will not compile.

4.10.5 Swap Function 5

The sixth line has a problem: k is an integer but a is a pointer. It is invalid to assign
a pointer’s value to an integer. The eighteenth line also has a problem: t is an integer and
adding * in front of t is invalid.

This page intentionally left blankThis page intentionally left blank

Chapter 5

Writing and Testing Programs

5.1 Distinct Array Elements . 65
5.1.1 main Function . 66
5.1.2 areDistinct Function . 67
5.1.3 Compiling and Linking . 68
5.1.4 make . 69

5.2 Test Using Makefile . 71
5.2.1 Generating Test Cases . 72
5.2.2 Redirecting Output . 72
5.2.3 Use diff to Compare Output . 73
5.2.4 Adding Tests to Makefile . 73

5.3 Invalid Memory Access . 75
5.4 Using valgrind to Check Memory Access Errors . 77
5.5 Test Coverage . 79
5.6 Limit Core Size . 82
5.7 Programs with Infinite Loops . 83

This chapter uses programming problems to illustrate how to use pointers and how to test
programs for correctness.

5.1 Distinct Array Elements

This program has a function with two arguments: an array of integers and the number
of array elements. The function returns 1 if the array elements are distinct, and the function
returns 0 if two or more elements store the same value.

int areDistinct(int * arr , int len)1

// arr stores the address of the first element2

// len is the number of elements3

// If len is zero , the function returns 1.4

The main purpose of this problem is to teach important concepts and tools for writing
larger programs. This problem also teaches how to take advantage of the make command to
compile and test programs more efficiently. This problem teaches the following important
concepts:
• function declarations and definitions
• compiling and linking
• the make command in Linux

65

66 Intermediate C Programming

5.1.1 main Function

Consider the main function of this program:

// main.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

int areDistinct(int * arr , int len);5

int main(int argc , char * * argv)6

{7

i f (argc != 2)8

{9

return EXIT_FAILURE;10

}11

FILE * fptr = fopen(argv[1], "r");12

i f (fptr == NULL)13

{14

return EXIT_FAILURE;15

}16

int length = 0;17

int value;18

while (fscanf(fptr , "%d", & value) == 1)19

{20

length ++;21

}22

fseek (fptr , 0, SEEK_SET);23

int * arr = malloc(length * s i z eo f (int));24

length = 0;25

while (fscanf(fptr , "%d", & (arr[length])) == 1)26

{27

length ++;28

}29

fclose (fptr);30

int dist = areDistinct(arr , length);31

printf("The elements are");32

i f (dist == 0)33

{34

printf(" not");35

}36

printf(" distinct .\n");37

free (arr);38

return EXIT_SUCCESS;39

}40

The main function has two input arguments: an integer (int) called argc and a pointer
to pointers of characters (char * *) called argv. Do not worry about the second argument
for now. The names of the arguments are argc and argv. In theory you could change
these names; however, this is inadvisable because everyone uses argc and argv. Changing
their names would not improve the program in any way. The prefix arg means arguments.
Section 1.1 explains that the value of argc means the count of arguments that are passed
to the program. We will explain argv in a later chapter after explaining strings.

Writing and Testing Programs 67

The condition at line 8 is used to ensure that the program has two arguments. If two
arguments are not supplied to the program, then it will not proceed to line 12. The first
argument is always the name of the program. By requiring two arguments, one additional
argument can specify the name of a file that contains data that we want to process. If the pro-
gram does not have exactly two arguments, the program stops by returning EXIT FAILURE.
This symbol is defined in stdlib.h. When the main function returns, this program ter-
minates. EXIT FAILURE means that the program failed to accomplish what the program is
supposed to do. For now, we can ignore the program between lines 12 and line 30 and also
line 38. This part of the program is about reading data from a file, and will be explained
in detail in a later chapter.

Line 31 calls the areDistinct function. Dependent on the result of line 31, this program
prints either “The elements are distinct.” or “The elements are not distinct.” Finally, the
program returns EXIT SUCCESS because it successfully determined whether or not the values
are distinct.

The fifth line declares the areDistinct function so that main knows about it. This
declaration says that the areDistinct function returns an integer and takes two arguments.
The first argument is a pointer to integer, and the second argument is an integer. Without
this declaration, the gcc compiler would not know anything about areDistinct. If the fifth
line is removed, then gcc will give the following warning message

warning: implicit declaration of function ’areDistinct’

To summarize the main function:
• The program checks the value of argc to determine whether or not an additional input

argument is given.
• If the program cannot accomplish what it is supposed to do, the main function returns
EXIT FAILURE.
• The main function must include stdlib.h because that is where EXIT FAILURE and
EXIT SUCCESS are defined.
• The program terminates when the main function uses return.
• The main function returns EXIT SUCCESS after it accomplishes its work.

5.1.2 areDistinct Function

The fifth line in main.c declares the areDistinct function; however, the function has
not been defined yet. A function’s definition implements the function. Some people also call
a function’s definition the function’s body. A function’s definition must have a pair of { and
} enclosing the body. In contrast, a function’s declaration replaces the body (i.e., everything
between { and }) by a semicolon.

/* declaration */1

int areDistinct(int * arr , int len);2

3

/* definition */4

int areDistinct(int * arr , int len)5

{6

// some code7

}8

Below is the code listing for the definition of the areDistinct function. It goes through
the elements in the input array one by one, and checks whether any element after this current
one has the same value. Checking the elements before the current element is unnecessary,

68 Intermediate C Programming

because they have already been checked in earlier iterations. If two elements have the same
value, the function returns 0. If no match is found after going through all of the array
elements, then this function returns 1. If len is zero, the function does not enter the for-
loop at the sixth line, goes directly to line 18, and then returns 1.

// aredistinct.c1

int areDistinct(int * arr , int len)2

{3

int ind1;4

int ind2;5

for (ind1 = 0; ind1 < len; ind1 ++)6

{7

for (ind2 = ind1 + 1; ind2 < len; ind2 ++)8

{9

i f (arr[ind1] == arr[ind2])10

{11

// found two elements with the same value12

return 0;13

}14

}15

}16

// have not found two elements of the same value17

return 1;18

}19

5.1.3 Compiling and Linking

The functions main and areDistinct are in two different files. Large programming
projects use multiple files—perhaps dozens or hundreds, or even thousands. There are many
reasons for using so many files when writing large programs. For example,
• Large programming projects require teams of people, and it is easier for individuals

to work on individual files.
• A large program is developed in many phases, and files are added in each phase.
• In good software design, each file should implement a set of closely related features.
• If two features are sufficiently different, then they should reside in two different files.

This approach makes it easy to manage and navigate large amounts of code.
Attempting to write a large program in a single file would be equivalent to putting

everything into a single drawer: It is messy and creates problems every time someone wants
to find, add, or remove anything in the drawer. Section 1.1 explained how to use gcc to
convert a source file into an executable file. It can also be used to convert two or more
source files into one executable. This is the command in a Linux Terminal:

$ gcc aredistinct.c main.c -o prog

This command creates an executable file called prog. Section 2.7 suggests that gcc should
always be run with -Wall -Wshadow. Furthermore, if you want to run gdb or ddd, then you
must also add -g after gcc. The new command is

$ gcc -g -Wall -Wshadow aredistinct.c main.c -o prog

As more and more files are added, this command becomes too long to type. Running
gcc may take a rather long time because every source (.c) file is recompiled every time.

Writing and Testing Programs 69

This seems acceptable for two files, but becomes a serious problem for larger projects.
Recompiling every file can take minutes, or even hours.

Fortunately it is possible to compile individual files separately. When a source file is
compiled, an intermediate file is created. This intermediate file is called an object file and it
has the .o extension. Once an object file has been created for the corresponding source file,
gcc has a special procedure, called linking, for creating an executable file. The following
shows the commands.

$ gcc -g -Wall -Wshadow -c aredistinct.c
$ gcc -g -Wall -Wshadow -c main.c
$ gcc -g -Wall -Wshadow ardistinct.o main.o -o prog

The first gcc command compiles aredistinct.c and creates the object file whose name
is aredistinct.o. Adding -c after gcc tells gcc to create an object file. The object file has
the same name as the source file, except the extension is changed from .c to .o. Similarly,
the second command compiles main.c and creates main.o. The third command takes the
two object files and creates the executable file. This command links the two files because
the input files are object files and uses -o for the name of the executable output file. Please
notice that the last command has no -c.

To see how this saves time, note that aredistinct.o only needs to be updated if
aredistinct.c is changed. Similarly, main.o only needs to be updated if main.c changes.
If either of the object files change, then the link command (the third command above) needs
to be rerun to generate the updated executable. Avoiding the unnecessary compilation saves
time. This is called separate compilation. Even if the advantages of separate compilation
are compelling, typing the three commands is even more awkward and tedious than typing
one command. It certainly is inefficient to type

$ gcc -g -Wall -Wshadow -c main.c
$ gcc -g -Wall -Wshadow ardistinct.o main.o -o prog

whenever main.c is modified. These commands are too long to type over and over again.
Moreover, it is necessary to keep track of which files have been changed and need recom-
pilation. Fortunately, special build tools have been developed to take care of these issues.
The make program in Linux is one popular tool for this purpose.

5.1.4 make

The make program in Linux takes a special input file whose name is Makefile. The main
purpose of the Makefile is to decide which files need to be recompiled. The decisions are
based on the modification time of the object files and the relevant .c files. The object file
aredistinct.o depends on aredistinct.c. If aredistinct.c has a newer modification
date (or time) than aredistinct.o, then make recompiles aredistinct.c. This is expressed
below in the Makefile.

aredistinct.o: aredistinct.c1

gcc -g -Wall -Wshadow -c aredistinct.c2

The first line uses : to indicate dependence—aredistinct.o depends on aredistinct.c.
If aredistinct.o does not exist or aredistinct.c is newer than aredistinct.o, then
the command in the next line will be executed. This command uses gcc to recompile
aredistinct.c and to generate aredistinct.o. A Tab key is needed before gcc at the
second line. In make Tab cannot be replaced by spaces.

Note that Makefile is the name of a file that make looks for when it runs. You can tell
make to use any file by adding -f name:

70 Intermediate C Programming

$ make -f name

In this case, the make program uses name as the input, instead of Makefile. Most people
just use Makefile because it is the default, and everyone understands what the file is for.
The following Makefile includes the dependence of main.o and main.c.

aredistinct.o: aredistinct.c1

gcc -g -Wall -Wshadow -c aredistinct.c2

3

main.o: main.c4

gcc -g -Wall -Wshadow -c main.c5

6

This is a comment7

If a line is blank (e.g., line 3), it is discarded by the make command. In Makefile,
anything after # is treated as a comment and ignored. You can use symbols in Makefile.
Symbols are usually uppercase letters. After creating a symbol, it can be expressed by using
$() to enclose the symbol. The following Makefile replaces gcc -g -Wall -Wshadow using
two symbols GCC and CFLAGS.

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

3

aredistinct.o: aredistinct.c4

$(GCC) $(CFLAGS) -c aredistinct.c # another comment5

6

main.o: main.c7

$(GCC) $(CFLAGS) -c main.c8

Why are symbols useful? A general principle in software design is to use symbols to
express some common things. If changes are needed later, these modifications can be made
in only one place. For example, the Makefile could be modified to use another compiler,
and only the first line needs to be updated. There is another common reason for updating a
Makefile. When a program has been completed and is ready for customers. In this case, we
want to replace -g with -O. Please notice that the letter is the uppercase O for optimization,
not zero. The former adds debugging information to the program. The latter optimizes the
program and makes it faster. Replacing -g by -O can make a program noticeably faster.
We only need to update the CFLAGS symbol. By using a single symbol, we ensure that the
change is consistent throughout the entire Makefile.

GCC = gcc1

CFLAGS = -O -Wall -Wshadow # replace -g by -O2

3

This is a comment4

aredistinct.o: aredistinct.c5

$(GCC) $(CFLAGS) -c aredistinct.c # another comment6

7

main.o: main.c8

$(GCC) $(CFLAGS) -c main.c9

The Makefile still needs the command to link the two object files together. This is
placed below the symbols in the Makefile.

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

Writing and Testing Programs 71

3

prog: aredistinct.o main.o4

$(GCC) $(CFLAGS) aredistinct.o main.o -o prog # no -c5

6

aredistinct.o: aredistinct.c7

$(GCC) $(CFLAGS) -c aredistinct.c8

9

main.o: main.c10

$(GCC) $(CFLAGS) -c main.c11

The fourth line says the executable prog depends on both aredistinct.o and main.o.
If either object file is newer than prog, then the executable needs to be rebuilt by linking
the two object files. Line 7 determines whether aredistinct.o needs to be regenerated.
Line 10 determines whether main.o needs to be regenerated.

In a Linux Terminal, type

$ make

The output is

gcc -g -Wall -Wshadow -c aredistinct.c

gcc -g -Wall -Wshadow -c main.c

gcc -g -Wall -Wshadow aredistinct.o main.o -o prog

If you type make in the Terminal again, the output is

make: ‘prog’ is up to date.

If you change main.c (add a comment somewhere) and type make, the output is

gcc -g -Wall -Wshadow -c main.c

gcc -g -Wall -Wshadow aredistinct.o main.o -o prog

As you can see, main.o is regenerated but aredistinct.o is not regenerated.
We have now solved both problems described above in building programs: (1) we have

replaced the long awkward commands with make and (2) make automatically uses depen-
dencies to determine which files need to be recompiled, thus reducing the amount of time
required to build large projects. There are three dependence rules in this Makefile: prog,
aredistinct.o, and main.o. When make is typed, we tell the make program to check the
first rule, i.e., the rule at the top of the Makefile. If we put the prog dependence and the
corresponding action (lines 4 and 5) lower in Makefile, we need to explicitly tell make to
check the prog rule first, as follows:

$ make prog

5.2 Test Using Makefile

A Makefile can be used for many more purposes. One common usage is to test programs.
Before explaining how to test programs, please note the following important rules on testing
programs:

72 Intermediate C Programming

• It is possible to test a program and demonstrate that the program is incorrect.
• It is almost impossible to test a program and demonstrate that the program is correct.
• If a test fails (assuming the test is valid), then we know that the program is wrong.
• If a program passes a test, what do we know about the program? Not much.
This may seem puzzling. If a program passes many tests, then the program must be

correct, right? In a way, this is like the theory of “black swans”. If we observe a thousand
white swans, we do not know whether black swans exist or not. Similarly, passing a thousand
tests does not tell us whether a program is correct. In contrast, if we see one black swan,
we know it exists. If a program fails one test, the program has a problem.

The truth is that testing is extremely hard (and important). Passing many tests gives
you some confidence, but no guarantee. A non-trivial program can have many possible test
cases. It is impossible to test so many cases. Even though testing is imperfect, testing is still
useful in developing programs. The following explains how to develop a strategy for testing.

5.2.1 Generating Test Cases

To test a program, we need test cases. To test areDistinct, we need different test cases:
• len is zero or not.
• arr either contains distinct elements or not.

At least three test cases are needed:
1. an empty file making len zero
2. a file with distinct numbers
3. a file with duplicate numbers
Creating the first test case is easy: Make an empty file. The touch command in Linux

can create an empty file. The second and the third test cases can be created by hand.
Alternatively, test cases can be developed using an on-line random number generator, saving
the results to a file. In this case, how do we know whether the numbers are distinct? The
sort and uniq commands in Linux can be used for this. The first command orders the
numbers and the second command tells whether the sorted numbers are unique or not. If
we add -d after uniq, the command displays which numbers duplicate. We chain the two
commands together using a pipe. The pipe takes the output of the sort command, and
makes it the input to the uniq command. In a Linux Terminal:

$ sort filename | uniq -d

filename is the name of the file that stores the random numbers. If the numbers in this file
are distinct, nothing appears. If some numbers duplicate, then the duplicate numbers are
shown on the screen.

5.2.2 Redirecting Output

Section 1.2 explained how to redirect a program’s output. Instead of printing “The
elements are distinct.” or “The elements are not distinct.” on the computer screen, the
output can be saved to a file. The following command redirects the output to the file whose
name is outputs/output0:

$./prog inputs/input0 > outputs/output0

Please check that the directory outputs exists before running this command. If it does not
exist, then use this command to create the directory:

$ mkdir outputs

Writing and Testing Programs 73

5.2.3 Use diff to Compare Output

Next, we use the diff command to compare the expected output with the output of the
program. Section 1.2 mentions this command and now you know how to use it.

$ diff expected/expected0 outputs/output0

If these two files are identical, then nothing appears on the computer screen. This means
that the program generates the correct output for this test case. If these two files are
different, then the difference is shown on the screen. We can add -w after diff to ignore
differences caused only by spaces.

5.2.4 Adding Tests to Makefile

As explained earlier, make can reduce the amount of typing, but it is really much more
than that. With make we can create jobs with dependent jobs, and only the required jobs are
rerun when files are edited. We can use the scheme to add a testing job into our Makefile.

test0: prog1

./prog inputs/input0 > outputs/output02

diff expected/expected0 outputs/output03

This is another dependence rule. If this dependence rule is not the first rule in the Makefile,
we need to type:

$ make test0

This dependence follows the same rule mentioned earlier even though test0 is not a file.
Because test0 is not a file, its time can never be later than the time of prog. As a result,
the following two commands (./prog and diff) will always be executed. Before executing
these two commands, make checks the dependence of prog because it is at the right side of
the colon. The make program finds this rule in the Makefile,

prog: aredistinct.o main.o1

and make compares the time of these three files. If prog is older, then the executable file
prog will be regenerated. Before regenerating the executable file, make finds another two
rules in the Makefile:

aredistinct.o : aredistinct.c1

main.o : main.c2

Each object file will be regenerated if it is older than the corresponding .c file. Because
of these dependences, when you type:

$ make test0

the executable file prog will be regenerated if either .c file has changed since the last time
make was invoked. More rules can be added to the Makefile for running different cases:

test1: prog1

./prog inputs/input1 > outputs/output12

diff expected/expected1 outputs/output13

4

test2: prog5

./prog inputs/input2 > outputs/output26

74 Intermediate C Programming

diff expected/expected2 outputs/output27

8

test3: prog9

./prog inputs/input3 > outputs/output310

diff expected/expected3 outputs/output311

12

test4: prog13

./prog inputs/input4 > outputs/output414

diff expected/expected4 outputs/output415

To test each case, type

$ make test1
$ make test2
$ make test3
$ make test4

Another rule can be used to test all test cases at once:

testall: test0 test1 test2 test3 test41

Finally, developers usually add a special rule that deletes computer-generated files:

clean:1

/bin/rm -f *.o prog outputs /*2

When we type

$ make clean

all of the object files (*.o), the executable prog, and the output files outputs/* are deleted.
This is the full Makefile after adding all of these rules:

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

3

prog: aredistinct.o main.o4

$(GCC) $(CFLAGS) aredistinct.o main.o -o prog # no -c5

6

aredistinct.o: aredistinct.c7

$(GCC) $(CFLAGS) -c aredistinct.c8

9

main.o: main.c10

$(GCC) $(CFLAGS) -c main.c11

12

testall: test0 test1 test2 test3 test413

14

test0: prog15

./prog inputs/input0 > outputs/output016

diff expected/expected0 outputs/output017

18

test1: prog19

./prog inputs/input1 > outputs/output120

diff expected/expected1 outputs/output121

22

test2: prog23

Writing and Testing Programs 75

./prog inputs/input2 > outputs/output224

diff expected/expected2 outputs/output225

26

test3: prog27

./prog inputs/input3 > outputs/output328

diff expected/expected3 outputs/output329

30

test4: prog31

./prog inputs/input4 > outputs/output432

diff expected/expected4 outputs/output433

34

clean:35

/bin/rm -f *.o prog outputs /*36

5.3 Invalid Memory Access

In Section 2.3.5, I said “if an array has n elements, the valid indexes are 0, 1, 2, ..., n−1.”
What happens if we use an invalid index? The simple answer is the program’s behavior
is undefined. That means anything could happen, and it will not be predictable. If the
index is incorrect, the program will access a memory address that does not belong to the
array. Remember that as a programmer, you have no control over which memory addresses
your program can use. We do not know what is stored at an address outside the range of
the array. Consider this program:

/*1

* wrongindex.c2

*/3

#include <stdio.h>4

#include <stdlib.h>5

#include <string.h>6

int main(int argc , char * * argv)7

{8

int x = -2;9

int arr[] = {0, 1, 2, 3, 4};10

int y = 15;11

printf("& x = %p, & y = %p\n", & x, & y);12

printf("& arr [0] = %p, & arr [4] = %p\n", & arr[0],13

& arr [4]);14

printf("x = %d, y = %d\n", x, y);15

arr[-1] = 7;16

arr[5] = -23;17

printf("x = %d, y = %d\n", x, y);18

arr[6] = 108;19

printf("x = %d, y = %d\n", x, y);20

arr[7] = -353;21

printf("x = %d, y = %d\n", x, y);22

return EXIT_SUCCESS;23

}24

76 Intermediate C Programming

An array is created at line 10 and it has 5 elements. The valid indexes are 0, 1, 2, 3,
and 4. Lines 12 and 13 print the addresses of x, y, and the array. Lines 16, 17, 19, and 21
use incorrect indexes. If we compile, link, and execute this program, we may find that the
values of x or y are changed because we are using incorrect indexes. This is not guaranteed,
and the results will depend on the specific compiler. This is the output when I run this
program:

& x = 0x7fffcabf4e68, & y = 0x7fffcabf4e6c

& arr[0] = 0x7fffcabf4e50, & arr[4] = 0x7fffcabf4e60

x = -2, y = 15

x = -2, y = 15

x = 108, y = 15

x = 108, y = -353

As we can see, x has changed because of this assignment:

arr[6] = 108;19

Similarly, y is changed because of this assignment:

arr[7] = -353;21

In this example, the gcc compiler has reordered the local variables in the call stack. The
addresses of x and y are larger than the addresses of the array elements. Thus, x and y are
changed when the indexes are 6 and 7 respectively. The program uses addresses that are
given to it by the operating system. If we run the above program again, we will likely see
different addresses for x and y. It is possible that neither x nor y, but something else, is
changed due to using the invalid indexes.

The real problem is that the program’s behavior is undefined. What does this mean more
precisely? The effects of wrong indexes may change when the program runs on different
machines. Sometimes, it seems nothing is wrong, even though there is a pernicious error
in the code. Sometimes, the values of x or y may be changed. Sometimes, the program
stops with the message “Segmentation fault (core dumped).” This means that the program
intends to read from or write to a memory address that does not belong to the program.
Modern computers usually run many programs at once. Each program is given part of the
memory. If one program tries to read from or write to a wrong address, the operating system
may stop the program. This protects the other programs running on the same computer.

Be careful about the word “may” here. The operating system does not keep track of
every memory address. Instead, the operating system uses “pages” as a unit. The size of
a page of memory varies on the operating system; 4KB is common. If the wrong address
is within a page given to a program, then the operating system will not stop the program.
That means that a program may modify a variable within a valid page unintentionally
without causing a segmentation fault. In this example, x and y are changed. It is called
a segmentation fault, and not a page fault, because some processors organize memory by
variable sized “segments”. Page and segment may be used together: A segment may contain
multiple pages. In fact, “page fault” is already used in the context of virtual memory. Thus,
the name “segmentation fault” remains. If the wrong address is outside the program’s
segments, then the operating system will stop the program. Try replacing

arr[7] = -353;21

by

arr [7000] = -353;21

Writing and Testing Programs 77

compile, link, and run the program again. We will very likely see “Segmentation fault (core
dumped)”. The index 7000 is too large and probably outside the page given by the operating
system.

5.4 Using valgrind to Check Memory Access Errors

In Linux, a program called valgrind can help detect problems of accessing invalid
addresses. Please check whether valgrind has been installed on your computer. To use
valgrind, add

$ valgrind –tool=memcheck –verbose

before the command running the program. For example,

$ gcc -g -Wall -Wshadow wrongindex.c -o wrongindex
$ valgrind –tool=memcheck –verbose ./wrongindex

The first line uses gcc to create the executable file called wrongindex. To execute
this program, type ./wrongindex. The second line adds valgrind --tool=memcheck

--verbose in front of ./wrongindex. This will cause the program to be run within
valgrind, which in turn carefully checks every memory access to make sure that it is
valid. The output will include the following message:

Invalid write of size 4

at 0x4005D5: main (wrongindex.c:20)

This message says that something is wrong at the 20th line of the program. Sometimes
valgrind prints a lot to the computer screen. It is useful to direct valgrind’s output to a
log file, like so:

$ valgrind –tool=memcheck –verbose –log-file=valgrindlog ./wrongindex

Typing this long command repeatedly is too much work, and the command can be put
in the Makefile. This is the new Makefile for the program that determines whether an
array has distinct elements:

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

VALGRIND = valgrind --tool=memcheck --verbose --log -file3

4

5

prog: aredistinct.o main.o6

$(GCC) $(CFLAGS) aredistinct.o main.o -o prog # no -c7

8

aredistinct.o: aredistinct.c9

$(GCC) $(CFLAGS) -c aredistinct.c10

11

main.o: main.c12

$(GCC) $(CFLAGS) -c main.c13

14

78 Intermediate C Programming

testall: test0 test1 test2 test3 test415

16

test0: prog17

./prog inputs/input0 > outputs/output018

diff expected/expected0 outputs/output019

$(VALGRIND)=log0 ./prog inputs/input0 > /dev/null20

21

test1: prog22

./prog inputs/input1 > outputs/output123

diff expected/expected1 outputs/output124

$(VALGRIND)=log1 ./prog inputs/input0 > /dev/null25

26

test2: prog27

./prog inputs/input2 > outputs/output228

diff expected/expected2 outputs/output229

$(VALGRIND)=log2 ./prog inputs/input0 > /dev/null30

31

test3: prog32

./prog inputs/input3 > outputs/output333

diff expected/expected3 outputs/output334

$(VALGRIND)=log3 ./prog inputs/input0 > /dev/null35

36

test4: prog37

./prog inputs/input4 > outputs/output438

diff expected/expected4 outputs/output439

$(VALGRIND)=log4 ./prog inputs/input0 > /dev/null40

41

clean:42

/bin/rm -f *.o prog outputs /* log*43

The third line creates a symbol for the valgrind command. What is /dev/null in the
20th line? Running prog will produce the output “The elements are distinct.” or “The
elements are not distinct.” This output has already been stored in outputs/output0 in
line 18. Thus, in line 20, the output is discarded. In Linux, /dev/null is a special file that
simply discards everything put into this special file. It is the “black hole” in Linux. Line 20
says “ignore any output produced by running prog”. After making these changes we can
type

$ make testall

and a lot of commands will run. The outputs of valgrind are stored in the log files. We
can use the grep command to check whether any error has been detected by valgrind:

$ grep ERROR *log*

If the result is

ERROR SUMMARY: 0 errors from 0 contexts

valgrind has not detected any problems.
Even though valgrind is helpful identifying which lines cause problems, valgrind is

not perfect. Sometimes, a program has problems and valgrind fails to detect them. This
happens because valgrind itself has limitations. The limitations may occur when running

Writing and Testing Programs 79

certain system calls to talk directly to hardware. Please read the valgrind document for
more information on its limitations. For example, On x86 and amd64, there is no support
for 3DNow! instructions. ... Valgrind’s signal simulation is not as robust as it could be.
... Please understand that valgrind is another tool that can help, but not replace, good
software developers. In many cases, valgrind can detect memory problems. When valgrind

says that a program has no invalid memory accesses, it is still possible that the program
has problems not tested by the specific test cases. It is also possible that valgrind misses
an error because of its limitations. How can you prevent memory access errors? When you
write programs, be careful how the indexes are calculated. It is important to read your code
before testing it, because testing can only determine if a program is wrong.

Some programming languages, such as Java, check the index every time an array element
is read or written. If a wrong index is detected, an exception is thrown. This guarantees
that every invalid index is detected. However, checking indexes slows down the program.
C’s design principle is to do only what a program says and nothing more. This is a trade-off
in the designs of programming languages.

5.5 Test Coverage

Ideally, tests should check every line in the program. If some lines are not checked, it is
possible these lines contain mistakes. Checking every line means that every if statement
(and other conditions) is entered in some test cases. If a line is never tested, it is possible
that tests overlook the possible scenarios. It is also possible that the program has a defect
in its logic. Consider this example:

i f ((x < 0) && (x > 400))1

{2

vx = -vx;3

}4

This is part of a computer game of a bouncing ball in a court whose width is 400. The
intent of this code is to change the horizontal velocity vx when the ball hits the left wall as
x < 0 or hits the right wall as x > 400. What is wrong with this code? The intention is

i f ((x < 0) || (x > 400))1

{2

vx = -vx;3

}4

However, the mistake is using && (and) instead of || (or). Since it is impossible for x to be
smaller than zero and at the same time greater than 400,

vx = -vx;3

is never executed.
A programmer needs to read code carefully and detect these types of errors. There are

tools that can help find these types of problems, and one such tool examines test coverage.
It determines whether a particular line of code has been executed for a particular test input.
Here is an example:

/*1

coverage.c2

80 Intermediate C Programming

purpose: a condition that can never be true3

*/4

#include <stdio.h>5

#include <stdlib.h>6

int main(int argc , char * argv [])7

{8

int x;9

int vx = 10;10

for (x = -100; x < 1000; x ++)11

{12

i f ((x < 0) && (x > 400))13

{14

vx = -vx;15

printf("change direction\n");16

}17

}18

return EXIT_SUCCESS;19

}20

The tool gcov finds that the two lines

vx = -vx;15

printf("change direction\n");16

are never executed. This tool works in collaboration with gcc, and additional arguments
are required when running gcc:

$ gcc -g -Wall -Wshadow -fprofile-arcs -ftest-coverage coverage.c -o cov

The executable file is called cov. Next, run the ./cov program:

$./cov

Two output files are generated: coverage.gcda and coverage.gcno. We can now run the
gcov command.

$ gcov coverage.c

The output is

File ’coverage.c’

Lines executed:71.43% of 7

coverage.c:creating ’coverage.c.gcov’

Another new file called coverage.c.gcov is generated. Here is the content of this file:

-: 0: Source:coverage.c1

-: 0: Graph:coverage.gcno2

-: 0:Data:coverage.gcda3

-: 0:Runs:14

-: 0: Programs :15

-: 1:/*6

-: 2: file: coverage.c7

-: 3: purpose: a condition that can never be true8

-: 4:*/9

Writing and Testing Programs 81

-: 5:# include <stdio.h>10

-: 6:# include <stdlib.h>11

1: 7: int main(int argc , char * argv [])12

-: 8:{13

-: 9: int x;14

1: 10: int vx = 10;15

1101: 11: for (x = -100; x < 1000; x ++)16

-: 12: {17

1100: 13: i f ((x < 0) && (x > 400))18

-: 14: {19

#####: 15: vx = -vx;20

#####: 16: printf("change direction\n");21

-: 17: }22

-: 18: }23

1: 19: return EXIT_SUCCESS;24

-: 20:}25

Lines 15 and 16 are marked by ##### because these two lines are never executed. This
tool can be used with complex programs to determine whether particular lines are never
executed. If typing these commands is too much work, then it is possible to write the
Makefile such that everything is handled by make every time the program is modified.

Makefile for gcov1

GCC = gcc -g -Wall -Wshadow -fprofile -arcs -ftest -coverage2

cov: coverage.c3

$(GCC) coverage.c -o cov4

./cov5

gcov coverage.c6

grep "#" coverage.c.gcov7

clean:8

rm -f *.gcov *.gcno cov9

If we type make, this is the output:

gcc -g -Wall -Wshadow -fprofile-arcs -ftest-coverage coverage.c -o cov

./cov

gcov coverage.c

File ’coverage.c’

Lines executed:71.43% of 7

coverage.c:creating ’coverage.c.gcov’

grep "#" coverage.c.gcov

-: 5:#include <stdio.h>

-: 6:#include <stdlib.h>

#####: 15: vx = -vx;

#####: 16: printf("change direction\n");

This Makefile also has an option called clean. Typing make clean deletes the file
generated by gcov. If gcov reports that some lines are never executed, then the problem
may come from the program, as shown in this case. Sometimes, the problem comes from
the test inputs. Designing good test inputs is not trivial and some books discuss in detail
how to design test inputs. Here are some suggestions.

Suppose you are writing a program searching whether a value is an element of a sorted
array. You should design test inputs to cover the following scenarios:

82 Intermediate C Programming

• The value to search is an element of the array, somewhere in the middle of the array.
• The value is not an element of the array but between some elements in the array.
• The value is the same as the first element.
• The value is the same as the last element.
• The value is smaller than all elements.
• The value is larger than all elements.
• The array has only one element and the value is the same as this only element.
• The array is empty and the value is irrelevant.
Why is it necessary to test these different cases? Depending on the search algorithm and

how the algorithm is implemented, one test case may fail to detect any problem. Creating
good test inputs is not trivial. A different approach is called formal verification by proving a
program is correct regardless of inputs. This is an advanced topic and will not be discussed
here.

It is important to understand the limitation of test coverage. Low coverage means that
the test inputs need improvement. However, high coverage is not necessarily better. A good
test input is one that can detect problems in your programs. A simple program like the
following can get 100% coverage:

#include <stdio.h>1

#include <stdlib.h>2

int main(int argc , char * argv [])3

{4

return EXIT_SUCCESS;5

}6

This program does not do anything. Pursuing high coverage should not be a goal in
itself. The goal should be detecting and fixing problems.

It is necessary to further explain the limitations of testing. Some students believe that
their programs are correct if the programs pass all test cases given by their professors. This is
wrong for a very simple reason: It is difficult, almost impossible, to test all possible scenarios.
Every if condition in a program creates two possible scenarios. Studies show that an if

condition appears approximately every 10 to 15 lines of code (excluding comments). If your
program has 15,000 lines, there are approximately 1,000 if conditions and 21000 possible
scenarios. How large is this number? The fastest computer in the world can perform about
50× 1015 (255) operations per second. Testing 21000 scenarios would simply be impossible.

5.6 Limit Core Size

In some cases, invalid memory accesses will cause a “core dumped” message. The core
file is an old way to debug programs. Even though some people still use “core” to debug
their programs, this book does not teach how to do that. A core file can occupy a lot of
space on your disk. Use the following command to find whether a core file exists.

$ cd
$ find . -name ”core”

The first command returns to your home directory. The second command finds any core
file. Core files can be deleted by using the following command:

$ rm ‘find . -name ”core”‘

Writing and Testing Programs 83

The command rm means remove. The earlier command find . -name "core" is now
enclosed by single back-quotes. This is the quote mark ‘ sharing the key with ∼. This is
not the single quote ’ sharing the same key with the double quote ". The system settings
can be modified to eliminate cores. If you use the C shell, you can type

$ limit coredumpsize 0

Limiting the core size prevents the generation of a core file. This does not prevent
programs from making invalid memory accesses and having segmentation faults. We still
have to correct our programs and remove invalid memory accesses.

5.7 Programs with Infinite Loops

If a program has an infinite loop (i.e., a loop that will never end) and the program prints
something inside of the loop, then redirecting output to a file will create an infinitely large
file. Here is an example of an infinite loop:

#define MAX_VALUE 1001

int count = 0;2

while (count < MAX_VALUE)3

{4

printf("some information\n");5

}6

This while loop will not end because count is zero and never changes. The program will
print forever. When this occurs, use Ctrl-c to stop the program. This means pressing the
Ctrl key (usually at the left lower corner of keyboard) and the c key at the same time. If
you suspect that your program generates exceptionally large files, you can find the existence
of these large files by using the following command in the Terminal:

$ cd
$ du -s * | sort -n

The first command returns to the home directory. The second line has two com-
mands: du -s * displays the space occupied by each directory. The output is then sorted
by treating the values as numbers (not strings). When sorting by numbers 10 comes after
9. When sorting by strings, 10 comes before 9. The vertical bar is called a pipe in Linux.
It takes the output from the first program and makes it the input to the second program.
By piping the directory sizes into sort we can easily see which directories occupy a lot of
space. We can the enter these directories and run the du command again to quickly find
large files.

This page intentionally left blankThis page intentionally left blank

Chapter 6

Strings

6.1 Array of Characters . 85
6.2 String Functions in C . 88

6.2.1 Copy: strcpy . 88
6.2.2 Compare: strcmp . 89
6.2.3 Finding Substrings: strstr . 90
6.2.4 Finding Characters: strchr . 90

6.3 Understanding argv . 91
6.4 Counting Substrings . 93

Strings can be created by putting characters between double quotations. For example,
• “Hello”
• “The C language”
• “write 2 programs”
• “symbols $%# can be part of a string”
A string can include alphabet characters, digits, spaces, and symbols. The examples

above are string constants, which means that their data cannot be edited. In most cases,
however, string variables are preferable to store strings whose values may change. For ex-
ample, a program may ask a user to enter a name. The program cannot know the user’s
name in advance, and thus cannot be compiled with the name. From the program’s point
of view, the name is a string variable that gets initialized when it receives the name from
the keyboard input.

6.1 Array of Characters

Because strings are commonly used, many newer languages, such as C++ and Java, have
in-built string types. C, however, does not have a specific data type for strings. Instead,
C uses arrays of characters for strings. Every string is an array of characters but an array
of characters is not necessarily a string. To be a string, one element in the array must
be the special character ’\0’. This character terminates the string, and is called the null
terminator. If an array has characters after the null terminator, those characters are not
part of the string. Below are four arrays of characters but only arr3 and arr4 are strings
because only those two arrays contain ’\0’.

char arr1[] = {’T’, ’h’, ’i’, ’s’, ’ ’, ’n’, ’v’, ’t’};1

char arr2[] = {’T’, ’h’, ’i’, ’s’, ’ ’, ’s’, ’t’, ’r’, ’0’};2

char arr3[] = {’2’, ’n’, ’d’, ’ ’, ’s’, ’t’, ’\0’, ’M’};3

char arr4[] = {’C’, ’ ’, ’P’, ’ ’, ’@’, ’-’, ’\0’, ’1’, ’8’};4

85

86 Intermediate C Programming

The string in arr3 is “2nd st”. The character ’M’ is an array element but it is not part
of the string. Similarly, for arr4, the string is “C P @-”. The trailing characters ’1’ and ’8’
are elements of the array but they are not part of the string. We do not need to put any
number between [and] because gcc calculates the size for each array.

What is the difference between single quotation marks and double quotation marks?
Single quotations enclose a single letter, such as ’M’ and ’@’, and represent a character type.
Double quotations enclose a string and the null terminator, ’\0’, is automatically added to
the end of the string. Thus, the string stored in arr3 is “2nd st” (no ’\0’) but it actually
contains the element ’\0’. Note that “W” is different from ’W’. The former uses double quotes
and means a string, ending with a null terminator even though it is not shown. Hence, “W”
actually means two characters. In contrast, ’W’ is a character without a null terminator.

To explain this in another way, when storing a string of n characters, the array needs
space for n + 1 characters. The additional character is used to store the terminating ’\0’.
For example, to store the string “Hello” (5 characters), we need to create an array of 6
elements:

char arr [6]; /* create an array with 6 characters */1

arr [0] = ’H’;2

arr [1] = ’e’;3

arr [2] = ’l’;4

arr [3] = ’l’;5

arr [4] = ’o’;6

arr [5] = ’\0’; /* remember to add ’\0’ */7

Forgetting the null terminator ’\0’ is a common mistake. The null terminator
is important because it indicates the end (and thus length) of the string. In the earlier
examples, arr3 and arr4 were two arrays; arr3 had 8 elements and arr4 had 10 elements.
However, if they are treated as strings, the length of each is only 6. The null terminator is
not counted at part of the length. C provides a function strlen for calculating the length
of strings. Before calling strlen, the program needs to include the file string.h because
strlen and many string-related functions are declared in string.h.

// strlen.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

int main(int argc , char * * argv)5

{6

char str1[] = {’T’,’h’,’i’,’s’,’ ’,’n’,’v’,’t’};7

char str2[] = {’T’,’h’,’i’,’s’,’ ’,’s’,’t’,’r’,’0’};8

char str3[] = {’2’,’n’,’d’,’ ’,’s’,’t’,’\0’,’M’};9

char str4[] = {’C’,’ ’,’P’,’ ’,’@’,’-’,’\0’,’1’,’8’,’k’};10

char str5 [6];11

int len3;12

int len4;13

int len5;14

str5 [0] = ’H’;15

str5 [1] = ’e’;16

str5 [2] = ’l’;17

str5 [3] = ’l’;18

str5 [4] = ’o’;19

str5 [5] = ’\0’;20

len3 = strlen(str3);21

Strings 87

len4 = strlen(str4);22

len5 = strlen(str5);23

printf("len3 = %d,len4 = %d,len5 = %d\n",len3 ,len4 ,len5);24

return EXIT_SUCCESS;25

}26

The output for this program is

len3 = 6, len4 = 6, len5 = 5

Why is ’\0’ so important? The string functions use it to determine the end of strings.
The manual of strlen says the function, “calculates the length of the string s, excluding the
terminating null byte (’\0’).” In other words, ’\0’ is not counted. Although it is a simple
function, the implementation of strlen is instructive. This is one way of implementing
strlen:

int strlen(char *str)1

{2

int length = 0;3

while ((* str) != ’\0’)4

{5

length ++;6

str ++;7

}8

return(length);9

}10

Section 4.6 explains that when calling a function, the argument str stores the address of
the first array element. The sixth line increments an integer. The seventh line uses pointer
arithmetic, as explained in Section 4.8. Consider str5 and len5 only; this is the call stack
before calling strlen:

Frame Symbol Address Value

main

len5 106 garbage
str5[5] 105 ’\0’
str5[4] 104 ’o’
str5[3] 103 ’l’
str5[2] 102 ’l’
str5[1] 101 ’e’
str5[0] 100 ’H’

Calling strlen pushes a new frame onto the call stack with the return location, the
value address, the argument str, and the local variable length:

Frame Symbol Address Value

strlen

length 110 0
str 109 100

value address 108 106
return location 107 line 23

main

len5 106 garbage
str5[5] 105 ’\0’
str5[4] 104 ’o’
str5[3] 103 ’l’
str5[2] 102 ’l’
str5[1] 101 ’e’
str5[0] 100 ’H’

88 Intermediate C Programming

The argument str stores the address of the first array element and that address is 100.
The fourth line of strlen reads the value stored at the address and it is the character ’H’.
Since this is not a ’\0’, both length and str increment.

Frame Symbol Address Value

strlen

length 110 1
str 109 101

value address 108 106
return location 107 line 23

main

len5 106 garbage
str5[5] 105 ’\0’
str5[4] 104 ’o’
str5[3] 103 ’l’
str5[2] 102 ’l’
str5[1] 101 ’e’
str5[0] 100 ’H’

The value of str is the address of the second element and it is 101. The fourth line *

str reads the value at address 101 and the value is ’e’. Since this is not ’\0’, both length

and str increment again. Both length and str increment until str becomes 105, and the
condition at the fourth line is false. The function returns 5, without counting ’\0’.

Frame Symbol Address Value

main

len5 106 garbage → 5
str5[5] 105 ’\0’
str5[4] 104 ’o’
str5[3] 103 ’l’
str5[2] 102 ’l’
str5[1] 101 ’e’
str5[0] 100 ’H’

The strlen function ignores everything after ’\0’, and thus the string lengths of len3
and len4 are 6 even though they have 8 and 10 elements.

6.2 String Functions in C

In addition to strlen, C provides many functions for processing strings. Each of these
functions assumes that a string has ’\0’ as one of the elements. Below we introduce a few
of these functions.

6.2.1 Copy: strcpy

This function copies a string into a pre-allocated memory region. This function takes
two arguments: The first is the destination and the second is the source. Here is an example:

char src[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};1

char dest [6]; // must be 6 or larger2

strcpy(dest , src);3

There are five characters in “Hello” but one element is needed for the null terminator,
’\0’. Thus, the destination’s size needs to be six or larger. The strcpy function does not

Strings 89

check whether the destination has enough space. You must ensure that there is enough
space at the destination. The manual for strcpy says: “The strcpy() function copies the
string pointed to by src, including the terminating null byte (’\0’), to the buffer pointed to
by dest. The strings may not overlap, and the destination string dest must be large enough
to receive the copy.”

Moreover, the manual says: “If the destination string of a strcpy() is not large enough,
then anything might happen. Overflowing fixed-length string buffers is a favorite cracker
technique for taking complete control of the machine. Any time a program reads or copies
data into a buffer, the program first needs to check that there’s enough space. This may be
unnecessary if you can show that overflow is impossible, but be careful: Programs can get
changed over time, in ways that may make the impossible possible.”

What does this mean? When writing a program that uses strcpy, the programmer must
ensure that the destination has enough space. If sufficient space is not made available, then
the program has a serious and unpredictable flaw. Consider a situation where a program
reads data from the keyboard. For example, it asks a user to enter the name. To handle this
situation correctly, the program must be careful about an extremely long input. If sufficient
memory is not allocated and strcpy is called, then the program has a serious security flaw,
vulnerable to “buffer overflow attacks”.

Why does C not check the memory of the destination? To improve speed. Checking would
slow down programs. When C was designed in the late 1960s, computers were expensive
and slow. To make C programs fast, programmers had to take the responsibility of ensuring
that the destination has enough space.

6.2.2 Compare: strcmp

This function can be used to compare two strings. It takes two arguments:

strcmp(str1 , str2);1

The function returns a negative integer, a zero, or a positive integer depending on whether
str1 is less than, equal to, or greater than str2. The order of two strings is defined in the
same way as the order of words in a dictionary—also known as lexicographical order. For
example, “about” is smaller than “forever” because the letter a is before the letter f in a
dictionary. “Education” is after “Change”.

How are uppercase and lowercase letters compared? How does the function define the
order if one or both of the strings contain digits or symbols? The order is determined by
the ASCII (American Standard Code for Information Interchange) values. ASCII assigns
an integer value to each character. For example, the value for ’A’ is 65 and the value of ’a’ is
97. ASCII also assigns a value to each symbol or digit. The value for ’#’ is 35 and for digit
’7’ it is 55. The last statement may sound strange. Why does the value of digit ’7’ have a
value of 55? The simple answer is that character values are treated differently from integer
values. This can be shown using the following example:

/*1

* charint.c2

* how C treats integer and character differently3

*/4

#include <stdio.h>5

#include <stdlib.h>6

int main(int argc , char * * argv)7

{8

int v = 55;9

90 Intermediate C Programming

printf("%d\n", v);10

printf("%c\n", v);11

return EXIT_SUCCESS;12

}13

The output of this program is:

55

7

Why do the two lines print different values, even though both use v? The first printf

treats v as an integer by using %d. Hence, the printed value is 55. The second printf treats
v as a character by using %c. Since 55 is the ASCII value of character ’7’, 7 is printed on
screen. Note that in this case, using %c in printf causes the number 55 to be interpreted
as a character. C has different types, including char for characters and int for integers. A
char is an integer of a smaller range and can store one ASCII character. The character ’7’
has the value of 55. Even though they are both integers, the interpretations (%c or %d) are
different.

6.2.3 Finding Substrings: strstr

If string str1 is part of another string str2, we say str1 is a substring of str2. For
example, “str” is a substring of “structure” and “ure” is also a substring of “structure”.
“W” is a substring of “Welcome” but “sea” is not a substring of “sightseeing”.

If we want to determine whether one string is part of another string, we can use the
strstr function. This function takes two arguments: haystack and needle. The func-
tion attempts to locate needle within haystack. If needle is a substring of haystack,
strstr(haystack, needle) returns the address where the needle starts within haystack.
This address must not be NULL. If needle is not a substring of haystack, strstr(haystack,
needle) returns NULL. Please notice the order of the two arguments: The first is the longer
one. Here are two examples:

char haystack [] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};1

char * chptr; // a pointer2

chptr = strstr(haystack , "llo");3

// chptr ’s value is the address of haystack [2]4

chptr = strstr(haystack , "XY");5

// chptr ’s value is NULL6

In the first call of strstr, “llo” is part of “Hello” and the “llo” starts at the third element
(index is 2). Thus, strstr returns & haystack[2]. In the second call of strstr, “XY” is
not part of “Hello” and chptr’s value is NULL. The ending character ’\0’ in haystack is not
considered when finding the needle.

6.2.4 Finding Characters: strchr

specific character. It returns the address of the first occurrence of the character within
the string. If this string does not contain the character, then strchr returns NULL. Here are
some examples:

char str[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};1

char * chptr; // a pointer2

chptr = strchr(str , ’H’); // chptr’s value is str[0]’s address3

Strings 91

chptr = strchr(str , ’e’); // chptr ’s value is str[1]’s address4

chptr = strchr(str , ’l’); // chptr ’s value is str[2]’s address5

chptr = strchr(str , ’o’); // chptr ’s value is str[4]’s address6

chptr = strchr(str , ’t’); // chptr ’s value is NULL7

6.3 Understanding argv

The first example of Section 1.1 says that every C program starts at the special main
function

int main(int argc , char * * argv)1

Adding spaces between *, or in front of argv makes no difference. The following two function
prototypes are exactly the same:

int main(int argc , char * * argv)1

int main(int argc , char ** argv)2

What is argv? As explained in the previous chapter and summarized in Table 4.1, adding
an asterisk after a type makes the type into a pointer. What does it mean if there are two
asterisks?

C has no special type for strings. C uses arrays of characters for strings, and the data in
those arrays must have the special property of being terminated by a null character: ’\0’.
As explained in the previous chapter, an array is a pointer. If you imagine that C had a
type for strings called string, this type would need to be equivalent to char * in real C
programs. If string were a type, then what would be the type for an array of strings? That
would be string *. Since string is actually char *, the type of string * is char * *.

The second argument of main, argv, is an array of strings. The first string in this array is
argv[0] and the type of argv[0] is char *. The first letter of the first string is argv[0][0].
The type of argv[0][0] is char. Please review Section 4.7 for the type rules.

How is this laid out in memory? If argv is an array of strings, where is the memory
holding the actual characters? When calling the main function, the arguments are provided
by the operating system, more precisely, by the shell program in the Terminal. Since main

is also a function, the arguments are stored on the call stack, as any other function.

Frame Symbol Address Value

main
argv 101 ?
argc 100 ?

This is how to execute a program called prog with some arguments:

$./prog some arguments

When running this program, “some” and “arguments” are called the command-line ar-
guments. We have been using command-line arguments for some time. For example, in
Section 1.1:

$ gcc prog1.c -o prog

Here gcc is a program; prog1.c -o prog are the arguments. There are four arguments,
including the gcc command itself. The program itself is always the first argument.

Let me go back to this command:

92 Intermediate C Programming

$./prog some arguments

There are three arguments so argc is 3, including ./prog itself. The value of argv is the
address of the first element, i.e., & argv[0]. Where is argv[0] stored? Before the main

function is called, the C runtime places it somewhere on the call stack. As usual, we do not
need to know where it is stored. We just need to know how to get the information: by using
argv[0] to get the first string.

The table below shows the call stack. The value of argv is the address of argv[0]. As
with all arrays, the addresses of argv[0], argv[1], and argv[2] are contiguous. For the
sake of explanation, we will use “-” for the values of argv[0], argv[1], and argv[2] for
the time being.

Frame Symbol Address Value

main

argv[2] 104 -
argv[1] 103 -
argv[0] 102 -
argv 101 102
argc 100 3

Since argv[0], argv[1], and argv[2] are strings, each of them is also a pointer storing
the starting address of the first letter in each of those strings. The value of argv[0] is the
address of argv[0][0]. To make it clearer a horizontal line separates the strings. Everything
still belongs to the same frame.

Frame Symbol Address Value

main

argv[0][6] 111 ’\0’
argv[0][5] 110 g
argv[0][4] 109 o
argv[0][3] 108 r
argv[0][2] 107 p
argv[0][1] 106 /
argv[0][0] 105 .
argv[2] 104 -
argv[1] 103 -
argv[0] 102 105
argv 101 102
argc 100 3

In this example, the address of argv[0][0] is right above the address of argv[2].
However, it does not necessarily have to be this way. As previously mentioned, the value
of argv[0] is the address of argv[0][0]. Similarly, the value of argv[1] is the address of
argv[1][0]. The lower part of the call stack is skipped since it is the same as shown earlier.

Strings 93

Frame Symbol Address Value

main

argv[1][4] 116 ’\0’
argv[1][3] 115 e
argv[1][2] 114 m
argv[1][1] 113 o
argv[1][0] 112 s
argv[0][6] 111 ’\0’
argv[0][5] 110 g
argv[0][4] 109 o
argv[0][3] 108 r
argv[0][2] 107 p
argv[0][1] 106 /
argv[0][0] 105 .

Finally, here is the full frame on the call stack, showing all the arguments:

Frame Symbol Address Value

main

argv[2][3] 126 ’\0’
argv[2][2] 125 s
argv[2][2] 124 t
argv[2][2] 123 n
argv[2][2] 122 e
argv[2][2] 121 m
argv[2][1] 120 u
argv[2][0] 119 g
argv[1][4] 118 r
argv[1][3] 117 a
argv[1][4] 116 ’\0’
argv[1][3] 115 e
argv[1][2] 114 m
argv[1][1] 113 o
argv[1][0] 112 s
argv[0][6] 111 ’\0’
argv[0][5] 110 g
argv[0][4] 109 o
argv[0][3] 108 r
argv[0][2] 107 p
argv[0][1] 106 /
argv[0][0] 105 .
argv[2] 104 117
argv[1] 103 112
argv[0] 102 105
argv 101 102
argc 100 3

6.4 Counting Substrings

Sometimes, we want to search a string and count the occurrences of a substring. For
example, “ice” is a substring of “nice” and it occurs only once. In the string, “This is his
history book”, the substring “is” occurs 4 times: “This is his history book”. The following

94 Intermediate C Programming

program combines what we have learned about strstr and argv to count the occurrences
of a substring.

/*1

* countsubstr.c2

* count the occurrence of a substring3

* argv [1] is the longer string4

* argv [2] is the shorter string5

* argv [1] may contain space if the string enclosed by " "6

*/7

8

#include <stdio.h>9

#include <stdlib.h>10

#include <string.h>11

int main(int argc , char * argv [])12

{13

int count = 0;14

char * ptr;15

i f (argc < 3)16

{17

printf("Please enter two strings .\n");18

return EXIT_FAILURE;19

}20

printf("argv [1] = %s, strlen = %d\n", argv[1],21

(int) strlen(argv [1]));22

printf("argv [2] = %s, strlen = %d\n", argv[2],23

(int) strlen(argv [2]));24

ptr = argv [1];25

do26

{27

ptr = strstr(ptr , argv [2]);28

i f (ptr != NULL)29

{30

printf("%s\n", ptr);31

count ++;32

ptr ++;33

}34

} while (ptr != NULL);35

i f (count == 0)36

{37

printf("argv [2] is not a substring of argv [1].\n");38

}39

e l se40

{41

printf("argv [2] occurs %d times in argv [1].\n", count);42

}43

return EXIT_SUCCESS;44

}45

This program is compiled and executed as follows:

$ gcc -g -Wall -Wshadow countstr.c -o countstr
$./countstr ”This is his history book.” is

Strings 95

The output of the program is:

argv[1] = This is his history book., strlen = 25

argv[2] = is, strlen = 2

is is his history book.

is his history book.

is history book.

istory book.

argv[2] occurs 4 times in argv[1].

Earlier we noted that spaces separate the command line arguments. If we enclose a
sentence in double quotation marks, the whole sentence is treated as a single argument,
as shown in this example. Lines 21 prints argv[1] and it is the whole sentence. Without
the quotation marks, “This” is argv[1] and “is” becomes argv[2], etc. We must use two
quotation marks; otherwise, the Terminal says:

Unmatched "

Below is the call stack for this example. It has been formatted to fit onto one page.
We have skipped the column for the frame because only one function is displayed. Line 25
assigns the value of argv[1] to ptr. This value is the address of argv[1][0], namely 116.

Symbol Address Value
argv[1][6] 122 s
argv[1][5] 121 i
argv[1][4] 120
argv[1][3] 119 s
argv[1][2] 118 i
argv[1][1] 117 h
argv[1][0] 116 T
argv[0][10] 115 ’\0’
argv[0][9] 114 r
argv[0][8] 113 t
argv[0][7] 112 s
argv[0][6] 111 t
argv[0][5] 110 n
argv[0][4] 109 u
argv[0][3] 108 o
argv[0][2] 107 c
argv[0][1] 106 /
argv[0][0] 105 .
argv[2] 104 142
argv[1] 103 116
argv[0] 102 105
argv 101 102
argc 100 3

Symbol Address Value
count 146 0
ptr 145 116

argv[2][2] 144 ’\0’
argv[2][1] 143 s
argv[2][0] 142 i
argv[1][25] 141 ’\0’
argv[1][24] 140 .
argv[1][23] 139 k
argv[1][22] 138 o
argv[1][21] 137 o
argv[1][20] 136 b
argv[1][19] 135
argv[1][18] 134 y
argv[1][17] 133 r
argv[1][16] 132 o
argv[1][15] 131 t
argv[1][14] 130 s
argv[1][13] 129 i
argv[1][12] 128 h
argv[1][11] 127
argv[1][10] 126 s
argv[1][9] 125 i
argv[1][8] 124 h
argv[1][7] 123

Line 28 finds “is” in “This is his history book.” The first occurrence of “is” is at address
118. This line changes ptr’s value to 118. Since it is not NULL, counter increments. Line
31 prints the string starting at the address where “is” is found. Recall that strings are
terminated by a null byte, and thus the entire string is printed starting from address 118.
Line 33 increments ptr to 119. This allows us to continue to search for “is” in the rest of

96 Intermediate C Programming

the argv[1]. Without this increment, strstr will search “is” from the address of 118, i.e.,
“is is his history book.”, and the first occurrence will be 118 again. The program would
enter an infinite loop if line 33 were removed. Instead, line 33 makes the program continue
searching from the address 119, i.e., “s is his history book.” The next occurrence of “is”
is at address 121. As ptr increments, it gradually moves toward the end of argv[1]. This
is evident from the output of line 31. After finding four occurrences, strstr cannot find
“is” any more and returns NULL. Note that count was incremented once every time strstr

returned a result other than NULL. Thus count now contains the number of times that “is”
was found in argv[1].

C provides many more functions for processing strings. You can find a list of the C’s
string processing functions by typing into the Terminal:

$ man string

man stands for “manual”. The manual displays a list of functions related to processing
strings, for example strcat.

Chapter 7

Programming Problems and Debugging

7.1 Implementing String Functions . 97
7.1.1 The C Library . 97
7.1.2 Header File . 98
7.1.3 mystring.h . 99
7.1.4 Creating Inputs and Correct Outputs . 100
7.1.5 Makefile . 104

7.1.6 mystring.c . 105

7.1.7 Using const . 106

7.2 Debugging . 108
7.2.1 Find Infinite Loops . 108
7.2.2 Find Invalid Memory Accesses . 109
7.2.3 Detect Invalid Memory Accesses . 111

7.1 Implementing String Functions

This problem asks you to implement several string functions. Even though these func-
tions are already available in the C standard library, it is instructive to learn how these
functions are implemented. You will create your own versions of these functions, without
using the ones from the C library.

7.1.1 The C Library

Many functions are defined in the standard C library. These functions are commonly used
so they are provided in the C language. Programmers do not have to write these functions.
The C library can significantly reduce the amount of work each programmer needs to do.
Examples of these functions include printf, strlen, and strcpy. During linking, gcc adds
the library functions from libc.so. This file is stored at /usr/lib.

Why is C designed in this way? What are the advantages of using library functions?
• Improving portability. In computing, portability means running the same program

across different operating systems, such as Linux, Windows, and MacOS. Library
functions handle low-level activities related to hardware, such as reading files from
a disk or sending packets through a network interface. It is better to implement the
hardware-specific details in libraries so that the same program can run on different
computers, as long as the program uses the correct libraries. Usually the source needs
to be recompiled using the compiler on the new machine.
• Reusing other programs. Some people take efforts creating functions useful to them-

selves and other people. Good programmers take advantage of well-written libraries.
Libraries can be used to add new features that do not exist in the programming lan-
guage. One example is the OpenCV library for image processing and computer vision.

97

98 Intermediate C Programming

The original C language does not support image processing or any specific computer
vision functionality. OpenCV provides these features as an extension to the language.
If a library is not from the original C language, you need to tell gcc to link to the
library. For example, if a program uses mathematical functions declared in math.h,
-lm needs to be added when linking the object files into an executable program.
• Enhancing performance. Libraries are usually well optimized so that programs can

have better performance.

7.1.2 Header File

So far we have seen something like:

#include <stdio.h>1

#include <stdlib.h>2

#include <string.h>3

These lines have been placed at the top of the file, before the main function. The header
files from the C language are stored in the directory /usr/include. What are they, and
why are they necessary? They are part of the header files of the standard C library. These
header files declare useful functions, and must be included before the functions are used.
For example:

• If a C file uses the printf function, the file needs to include stdio.h. This is the
header file for standard input and output functions for reading and writing to the
Terminal and files.

• If a C file uses EXIT SUCCESS, then the file needs to include stdlib.h because the
symbol EXIT SUCCESS is defined in that header file.

• If a C file calls mathematical functions, such as sin or log, then the file needs to
include math.h.

Header files have a .h extension. A header may be used for the following purposes:
• Define symbolic constants, for example:

#define MATH_PI 3.141591

#define MAX_LENGTH 502

• Declare functions, for example:

int areDistinct(int * arr , int len);1

Header files must not contain function implementations (definition).
• Define programmer-created data types. We will explore this feature further in Chap-

ter 16.
• Include other header files, for example

#include <stdio.h>1

It is very important that header files do not contain any function definitions. That means
that all functions listed in a header file must end in a ; character. If there is a block of code
(statements between { and }), then you will likely run into problems while linking code.
The implementations of functions should be kept in .c files (or libraries), and not in header
files. Header files are included; .c files are compiled and linked. Never include .c files. Pro-
grammers generally write .h and .c files in pairs: The .c file contains the implementation,
and the .h file contains only the function declarations. The first two lines and the very last
line of a header file are usually something like:

Programming Problems and Debugging 99

#ifndef FILENAME_H1

#define FILENAME_H2

// The rest of the header file3

#endif // do not add FILENAME_H4

The #ifdef is matched with an #endif that appears at the very end of the file.
It is important to replace FILENAME H with the actual name of the file. FILENAME H is a

symbol and can only contain alphanumeric characters and the underscore. Thus program-
mers generally replace the “.” that appears before a file extension with “ ” in the symbol.
As a matter of style, symbols are always typed in upper case. The purpose of #ifndef

... #define ... #endif is to prevent multiple inclusion. Sometimes, the same header file is
included multiple times, for example included by two different header files, and both of
them are included by the same .c file. Without this three lines at the very top and the
very bottom, gcc will report an error when the same header file is included multiple times.
Some other languages have no such problems; for example, in Java, the same package can
be imported multiple times.

When a header file is included, if this header file is from the standard C library, or some
library that is installed on the system, then < and > are used to enclose the file name, for
example:

#include <stdio.h>1

#include <stdilib.h>2

#include <math.h>3

When a programmer-defined header file is included, the file name is enclosed by double
quotations, such as:

#include "myheader.h"1

7.1.3 mystring.h

This programming problem has a header file called mystring.h and it declares several
string functions:

// mystring.h1

#ifndef MYSTRING_H2

#define MYSTRING_H3

// Count the number of characters in a string.4

// Example: my_strlen ("foo") should be 3.5

int my_strlen(const char * str);6

// --7

// Count the number of occurrences of a particular8

// character c in a string.9

// Example: my_countchar ("foo", ’o’) should be 2.10

//11

int my_countchar(const char * str , char c);12

// --13

// Convert a string to uppercase. Only alphabetical14

// characters should be converted; numbers and symbols15

// should not be affected. Hint: toupper(c) is a macro16

// that is the uppercase version of a character c.17

// Example: char * str = "foobar ";18

// my_strupper(foobar) is "FOOBAR ".19

100 Intermediate C Programming

void my_strupper(char * str);20

// --21

// Return the pointer to the first occurrence of the character22

// If the character is not in the string , return NULL.23

// Example: char * str = "foobar ";24

// my_strchr(foobar , ’b’) is the address of str [3]25

char * my_strchr(const char * str , char ch);26

#endif /* MYSTRING_H */27

Notice that my strlen and my countchar have const for the arguments but
my strupper does not. By adding const in front of an argument, this header file says
the input argument is a constant and cannot be changed inside of the function. This is im-
portant when an argument is a pointer. A pointer’s value is a memory address. Through the
pointer, it is possible to change the value at that memory address. Adding const prevents
a function from making such a change. If the function unintentionally changes the value at
that memory address, gcc will detect that. This is a good strategy in writing programs:
asking gcc to detect unintended changes. The function my strupper has no const because
the input string will be changed: The lowercase letters are changed to the uppercase letters.

7.1.4 Creating Inputs and Correct Outputs

Before writing a program, we should first develop a strategy for testing. To do this we
need test inputs and the correct outputs for those inputs. For this program, we use the
beginning of Albert Einstein’s Nobel speech as the test input:

If we consider that part of the theory of relativity which may1

nowadays in a sense be regarded as bona fide scientific knowledge , we2

note two aspects which have a major bearing on this theory. The whole3

development of the theory turns on the question of whether there are4

physically preferred states of motion in Nature (physical relativity5

problem). Also , concepts and distinctions are only admissible to the6

extent that observable facts can be assigned to them without7

ambiguity (stipulation that concepts and distinctions should have8

meaning). This postulate , pertaining to epistemology , proves to be of9

fundamental importance.10

11

These two aspects become clear when applied to a special case , e.g.12

to classical mechanics. Firstly we see that at any point filled with13

matter there exists a preferred state of motion , namely that of the14

substance at the point considered. Our problem starts however with15

the question whether physically preferred states of motion exist in16

reference to extensive regions. From the viewpoint of classical17

mechanics the answer is in the affirmative; the physically preferred18

states of motion from the viewpoint of mechanics are those of the19

inertial frames.20

21

This assertion , in common with the basis of the whole of mechanics as22

it generally used to be described before the relativity theory , far23

from meets the above "stipulation of meaning". Motion can only be24

conceived as the relative motion of bodies. In mechanics , motion25

relative to the system of coordinates is implied when merely motion26

is referred to. Nevertheless this interpretation does not comply with27

the "stipulation of meaning" i f the coordinate system is considered28

as something purely imaginary. If we turn our attention to29

Programming Problems and Debugging 101

experimental physics we see that there the coordinate system is30

invariably represented by a "practically rigid" body. Furthermore it31

is assumed that such rigid bodies can be positioned in rest relative32

to one another33

The main function takes three arguments:
1. argv[0] is always the name of the program.
2. argv[1] is a command. It can be one of the three options: “strlen”, “countchar”, or

“strupper”.
3. argv[2] is the name of the input file.
4. argv[3] is the name of the output file.
The main function calls one of the three functions declared in mystring.h. This program

takes the input file and calls the three functions in the following ways:
• When argv[1] is “strlen”, we write the length of each line to the output file. For

example, if a line is “development of the theory turns on the question of whether
there are”, then the output is 69. Each line contains an invisible new line character
’\n’ at the end. This character is the reason why the line ends.

• When argv[1] is “countchar”, then the program takes the first character of each line
and counts the occurrence of this character in that line. If a line is “nowadays in a
sense be regarded as bona fide scientific knowledge, we”, the output is 6 because the
character ’n’ occurs 6 times in this line.

• When argv[1] is “strupper”, the program converts the lowercase characters in the
input file to uppercase. For example, if a line is “These two aspects become clear
when applied to a special case, e.g. to”, then the output is “THESE TWO ASPECTS
BECOME CLEAR WHEN APPLIED TO A SPECIAL CASE, E.G. TO”.

This main function contains some functions that have not been explained yet. Below we
will describe the lines to pay attention to.

// main.c1

#include "mystring.h"2

#include <stdio.h>3

#include <stdlib.h>4

#include <string.h>5

#define LINE_SIZE 1000 // a line has at most 999 characters6

int main(int argc , char *argv [])7

{8

i f (argc != 4)9

{10

printf("usage: %s command input output\n", argv [0]);11

return EXIT_FAILURE;12

}13

14

FILE *infptr = fopen(argv[2], "r");15

i f (infptr == NULL)16

{17

printf("unable to open file %s!\n", argv [2]);18

return EXIT_FAILURE;19

}20

FILE *outfptr = fopen(argv[3], "w");21

i f (outfptr == NULL)22

{23

printf("unable to open file %s!\n", argv [3]);24

102 Intermediate C Programming

fclose(infptr);25

return EXIT_FAILURE;26

}27

28

int num_lines = 0;29

char buffer[LINE_SIZE];30

// count the number of lines in the file31

while (fgets(buffer , LINE_SIZE , infptr) != NULL)32

{33

num_lines ++;34

}35

36

fseek(infptr , 0, SEEK_SET);37

// return to the beginning of the file38

char ** lines = malloc(s i z eo f (char *) * num_lines);39

int i;40

for (i = 0; i < num_lines; i++)41

{42

i f (feof(infptr))43

{44

printf("not enough num_lines in file!\n");45

fclose(infptr);46

fclose(outfptr);47

return EXIT_FAILURE;48

}49

lines[i] = malloc(s i z eo f (char) * LINE_SIZE);50

fgets(lines[i], LINE_SIZE , infptr);51

}52

fclose(infptr);53

54

int total_length = 0;55

for (i = 0; i < num_lines; i++)56

{57

total_length += my_strlen(lines[i]);58

}59

// count the length of each line60

i f (strcmp(argv[1], "strlen") == 0)61

{62

for (i = 0; i < num_lines; i++)63

{64

fprintf(outfptr , "length: %d\n",65

my_strlen(lines[i]));66

}67

}68

/* for each line , count the occurrence of the first69

letter in the line */70

i f (strcmp(argv[1], "countchar") == 0)71

{72

for (i = 0; i < num_lines; i++)73

{74

fprintf(outfptr , "count(%c): %d\n", lines[i][0],75

Programming Problems and Debugging 103

my_countchar(lines[i], lines[i][0]));76

}77

}78

i f (strcmp(argv[1], "strupper") == 0)79

{80

for (i = 0; i < num_lines; i++) {81

my_strupper(lines[i]);82

fprintf(outfptr , "%s", lines[i]);83

}84

}85

86

for (i = 0; i < num_lines; i++)87

{88

free(lines[i]);89

}90

free(lines);91

fclose(outfptr);92

return EXIT_SUCCESS;93

}94

The if condition at line 9 checks whether or not the program has three arguments in
addition to the program’s name. For now, we do not need to worry about the code between
lines 15 and 59. These lines read the input file line by line. We will return to this subject later.
Line 61 checks the command in argv[1]. If the command is “strlen”, then this program
calls my strlen for each line and prints the length to the output file. In similar fashion,
line 71 checks whether argv[1] is “countchar”. Line 76 calls my countchar by using each
line as the string and the first character of the line as the character. Line 82 converts the
characters in each line to uppercase.

When running the program with this command

$./mystring strlen input output strlen

the output is stored in the file called output strlen. The first four lines of the file are

length: 631

length: 702

length: 703

length: 694

The original article has a blank line at the eleventh line. A blank line means that it only
has the new line character ’\n’. Thus, this line actually has one character. Similarly, line
21 also has one character. When running the program with this command

$./mystring strlen input output countchar

the output is stored in the file called output countchar. The first four lines of the file are

count(I): 11

count(n): 62

count(n): 33

count(d): 14

This is the final command

$./mystring strlen input output strupper

104 Intermediate C Programming

and the first four lines of the correct output are

IF WE CONSIDER THAT PART OF THE THEORY OF RELATIVITY WHICH MAY1

NOWADAYS IN A SENSE BE REGARDED AS BONA FIDE SCIENTIFIC KNOWLEDGE , WE2

NOTE TWO ASPECTS WHICH HAVE A MAJOR BEARING ON THIS THEORY. THE WHOLE3

DEVELOPMENT OF THE THEORY TURNS ON THE QUESTION OF WHETHER THERE ARE4

7.1.5 Makefile

The Makefile should look familiar:

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

OBJS = mystring.o main.o3

HDRS = mystring.h4

VAL = valgrind --tool=memcheck --leak -check=full5

VAL += --verbose --log -file=6

7

mystring: $(OBJS) $(HDRS)8

$(GCC) $(CFLAGS) $(OBJS) -o $@9

10

.c.o:11

$(GCC) $(CFLAGS) -c $*.c12

13

clean:14

rm -f mystring $(OBJS) out_* log*15

16

testall: test0 test1 test217

18

test0: mystring19

$(VAL)log0 ./ mystring strlen input out_len20

diff -q out_len expected_strlen21

22

test1: mystring23

$(VAL)log1 ./ mystring countchar input output_countchar24

diff -q output_countchar expected_countchar25

26

test2: mystring27

$(VAL)log2 ./ mystring strupper input out_upper28

diff -q out_upper expected_strupper29

This Makefile introduces several new concepts:
• Line 6 appends more options to the symbol VAL. This approach makes it easy to add

a symbol with many options.
• The symbol $@ is used on line 9. It means the symbol before the : at line 8. In this

case, the $@ means mystring. Using $@ is a convenient way to manage rules.
• Lines 11 and 12 mean “If an object file is needed, compile the corresponding .c file.”

It determines the object files on an as-needed basis. In this case, mystring depends on
OBJS and it depends on mystring.o and main.o. To invoke the mystring rule, make
will ensure that both mystring.o and main.o are up to date. If they need updating,
then the rule on lines 11 and 12 is invoked in order to generate the object files from
the corresponding .c file. Lines 11 and 12 are equivalent to the following:

Programming Problems and Debugging 105

mystring.o: mystring.c

$(GCC) $(CFLAGS) -c mystring.c

main.o: main.c

$(GCC) $(CFLAGS) -c main.c

If a program requires many object files, lines 11 and 12 can shorten Makefile signifi-
cantly.

7.1.6 mystring.c

The following is a reference solution for mystring.c:

// mystring.c1

#include "mystring.h"2

#include <ctype.h>3

int my_strlen(const char * str)4

{5

int len = 0;6

while (str[len] != ’\0’)7

{8

len ++;9

}10

return len;11

}12

13

int my_countchar(const char * str , char ch)14

{15

int count = 0;16

while (* str != ’\0’)17

{18

i f (* str == ch)19

{20

count ++;21

}22

str ++;23

}24

return count;25

}26

27

void my_strupper(char * str)28

{29

while (* str != ’\0’)30

{31

* str = toupper (* str);32

str ++;33

}34

}35

36

char * my_strchr(const char * str , char ch)37

{38

int ind = 0;39

106 Intermediate C Programming

while (str[ind] != ’\0’)40

{41

i f (str[ind] == ch)42

{43

return (& str[ind]);44

}45

ind ++;46

}47

// if the program reaches here , ch is not in str48

return NULL;49

}50

The argument str stores the address of the first element of the input string. Since a
string is an array of characters, we treat str as an array, as shown at line 7. We can also
treat str as a pointer, as shown at lines 17, 19, 23, 30, 32, and 33. As you can see, lines 7, 17,
and 30 use the null terminator character, ’\0’, to determine the end of the input strings.
Lines 17, 19, and 30 read the value at the address stored in str. This is the third usage of *
described in Table 4.1. Both lines read the value at that address. Line 23 increments str so
that it points to the next character in the array. Line 32 both reads from and writes to the
address. At the right side of =, it reads the value. At the left side of =, it writes the value.

Test your understanding of the program by answering this question: What happens
if lines 22 and 23 are exchanged (moving str ++; into the if condition right under
count ++;)? Is function my countchar still correct? Why?

7.1.7 Using const

The arguments of my countchar say that str is a constant. However, line 23 modifies
str. The seeming contradiction happens because const can be applied in two different
ways, with different meanings. The following example illustrates with two pointers chptr1

and chptr2:

// const.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

int main(int argc , char *argv [])5

{6

char str1 [20];7

char str2 [20];8

strcpy(str1 , "First");9

strcpy(str2 , "Second");10

const char * chptr1 = & str1 [0]; // const before char11

char * const chptr2 = & str1 [0]; // const after char12

// * chptr1 = ’C’; // not allowed13

* chptr2 = ’C’; // OK14

chptr1 = & str2 [0]; // OK15

// chptr2 = & str2 [0]; // not allowed16

return EXIT_SUCCESS;17

}18

Both chptr1 and chptr2 are pointers and their values store the address of the first
element of str. The following shows the call stack. For simplicity, we do not show argc and
argv.

Programming Problems and Debugging 107

Symbol Address Value
chptr2 114 100
chptr1 113 100
str1[6] 112 ’\0’
str1[5] 111 d
str1[4] 110 n
str1[3] 109 o
str2[2] 108 c
str2[1] 107 e
str2[0] 106 S
str1[5] 105 ’\0’
str1[4] 104 t
str1[3] 103 s
str1[2] 102 r
str1[1] 101 i
str1[0] 100 F

Lines 11 and 12 make chptr1 and chptr2 store the address of str1[0]. By putting
const in front of char * at line 11, we do not want to change the value at the memory
that is pointed by chptr1. Line 13 is not allowed because this line attempts to change the
value at address 100, i.e., & str1[0], through chptr1. Please note the word through. It
is still possible to change str1[0] as long as the change is not through chptr1. Line 15 does
not prevent us from changing chptr1 itself because chptr1 is not a constant. Hence, we
can change the value of chptr1 at line 15.

Symbol Address Value
chptr1 113 100 → 106 by line 15

In contrast, line 12 says chptr2 is a constant and so it cannot be changed in line 16.
However, it is possible to change the value of str1[0] through chptr2 at line 14.

Symbol Address Value
chptr2 114 100 (cannot be changed)
chptr1 113 100 → 106 by line 15
str1[0] 100 F → C by line 14

In my countchar, str itself is not a constant (similar to chptr1) so changing str itself
at line 23 is allowed. In fact, const can be used twice for the same pointer. In this exam-
ple, chptr3 stores the address of & str1[0]. Changing the value of chptr3 (line 17) and
changing the value at the address (line 18) are disallowed.

// const2.c1

#include <stdio.h>2

#include <stdlib.h>3

int main(int argc , char *argv [])4

{5

char str1 [20];6

char str2 [20];7

strcpy(str1 , "First");8

strcpy(str2 , "Second");9

const char * chptr1 = & str1 [0];10

char * const chptr2 = & str1 [0];11

const char * const chptr3 = & str1 [0];12

// * chptr1 = ’C’; // not allowed13

108 Intermediate C Programming

* chptr2 = ’C’; // OK14

chptr1 = & str2 [0]; // OK15

// chptr2 = & str2 [0]; // not allowed16

// chptr3 = & str2 [0]; // not allowed17

// * chptr3 = ’C’; // not allowed18

return EXIT_SUCCESS;19

}20

7.2 Debugging

To write good programs, we must abandon the habit of “coding-testing-debugging”.
Testing does not magically reveal what is wrong with a program and how to fix it. Instead,
we must have a plan before writing code. This includes having a testing and debugging
strategy. After writing each line of code, read it carefully. This saves time. It will help you
find simple mistakes, but reading code will also help reveal more subtle problems.

A common problem among learners is forgetting to initialize variables. C does not ini-
tialize variables. It is your responsibility. This can lead to apparently inexplicable bugs and
worse code that seems to work but then mysteriously fails. It is hard to find these types
of bugs by “testing” and “debugging” because the program behavior can be unexpected,
or sometimes appear correct. In this case, there is no substitute to reading the code, and
asking yourself if every variable has been initialized.

Another common mistake is putting ; in the wrong place. In the code listing for
mystring.c, if an ; is placed at the end of line 7, 17, or 30 then the program is incor-
rect because the block of code between { and } is no longer related to the while or if

conditions. Putting ; at the end of line 7, 17, or 30 makes the program enter infinite loops.
This problem can be difficult to find by testing alone because the program does not stop
and the output will probably be incomplete. Putting ; at the end of line 19 increments
the count regardless of whether * str and ch match. These problems are easy to find by
reading code line by line carefully. Unfortunately, gcc cannot offer much help because the
program is syntactically correct.

7.2.1 Find Infinite Loops

Even if you are very careful, it is difficult to avoid all mistakes. Thus it is useful to know
how to use a debugger such as gdb. It allows us to execute code line by line, and inspect
the values in the variables. It is important to appreciate that gdb is not a substitute to
reading your code, and reasoning about it logically. Nonetheless, gdb augments our ability
to diagnose and fix problems in code, for example, in finding infinite loops.

Infinite loops are typically indicated by a program that should stop quickly but does not.
Running the program again and again, of course, will not be helpful. Inserting “debugging
messages” into the code may be more helpful, but it also takes a lot of time. We need
to know where the actual problem is. Possible but difficult. If we know the problem, we
will fix it without inserting debugging messages. After finding and fixing the problem, the
debugging messages usually have to be removed. There is a better way: The gdb debugger
can make this easy.

Assume that we are running the code for mystring.c and a ; has accidentally been
inserted at the end of line 7. The program enters an infinite loop and does not stop.

Programming Problems and Debugging 109

$./mystring strlen input output strlen

What is the fastest way to diagnose this problem? Start gdb in a Linux Terminal.

$ gdb mystring

Please remember that gdb takes the executable file as the input, and not a .c file. Inside
gdb, type

(gdb) r strlen input output strlen

The first letter r means “run” the program. It replaces ./mystring in the command
line. Add the normal command-line arguments after r. The program now starts and enters
the aforementioned infinite loop. Press Ctrl-c to interrupt the normal execution of the
program and gdb will display something like:

Program received signal SIGINT, Interrupt.

0x0000000000400884 in my_strlen (str=0x603590 "If we consider that

part of the theory of relativity which may\n") at mystring.c:7

This means that the program has stopped at line 7 of the file mystring.c. The message
tells us where the infinite loop is. At the (gdb) prompt, type list to show the code:

int my_strlen(const char * str)4

{5

int len = 0;6

while (str[len] != ’\0’);7

{8

len ++;9

As explained earlier, infinite loops may occur in many places (lines 7, 17, and 30). Using
gdb to identify an infinite loop is easy and takes only a few seconds. Moreover, we do not
need to modify any line before using gdb.

7.2.2 Find Invalid Memory Accesses

An “invalid memory access”, or “segmentation fault”, is a common error that stops a
program. It occurs when a program attempts to access memory outside the allowed regions.
A program that has invalid memory accesses may create security vulnerability. We can
introduce a memory error into line 17 of mystring.c. That line should be:

while (* str != ’\0’)17

Suppose we accidentally write it as:

while (* str != ’0’) // without \17

What is the difference between ’\0’ and ’0’? The former is a null-terminator, a special
invisible character indicating the end of a string. The latter is a normal character like ’a’,
but happens to be the character zero: ’0’. Do not mix them. When running the program

$./mystring countchar input output countchar

we get

Segmentation fault (core dumped)

110 Intermediate C Programming

Segmentation fault means the program tries to access (read or write) memory at an
invalid address. The operating system reacts by stopping the program. It is similar to
attempting to enter someone else’s house. If you do not own the house, entering the house is
illegal. We can determine where segmentation fault occurs by using either gdb or valgrind.
If we run the program using gdb, we will see something like:

Program received signal SIGSEGV, Segmentation fault.

0x00000000004008cd in my_countchar (str=0x624000 $<$Address 0x624000

out of bounds$>$, ch=73 ’I’) at mystring.c:17

Type the bt (backtrace) command at the gdb prompt, to see the call stack.

#0 0x00000000004008cd in my_countchar (str=0x624000

$<$Address 0x624000 out of bounds$>$, ch=73 ’I’) at mystring.c:17

#1 0x0000000000400cc9 in main (argc=4, argv=0x7fffffffe418) at main.c:74

The call stack shows two frames. The top frame is frame 0 and the next is frame 1. In
gdb, you can see a specific frame. Type

(gdb) f 1

after the (gdb) prompt to enter frame 1. Type list to show the code around line 74 in
main.c. Type print i to print the value of i. This is the line number of the input file. Its
value is 0 meaning that the my countchar is processing the first line of input.

The first line of the input is “If we consider that part of the theory of relativity which
may\n” gdb can tell us that if we type the command print lines[i]:

(gdb) print lines[i]

$3 = 0x603590 “If we consider that part of the theory of relativity which may\n”

The starting address of this string is 0x603590. Something is wrong inside my countchar

but at this stage, it is unclear precisely what is wrong. Let’s go back to the frame of
my countchar by typing f 0:

(gdb) f 0

#0 0x00000000004008cd in my countchar (str=0x624000

<Address 0x624000 out of bounds>, ch=73 ’I’) at mystring.c:17

The segmentation fault occurs at line 17 and this line reads the value at the address stored
in str. Print the value of str in gdb:

(gdb) print str

$4 = 0x624000 <Address 0x624000 out of bounds>

Compare the value of str (0x624000) and the starting address of the string in main

(0x603590). The difference is quite large but the string is not very long, only 63 characters.
This means that str kept increasing far beyond the end of the string.

You may ask, “Why does the segmentation fault occur when str is so large? Doesn’t
the program start accessing invalid addresses after str is larger than 0x603590 + 63?”
It is correct that the program starts accessing invalid addresses after str is larger than
0x603590 + 63. However, Linux stops the program only when it reads memory that it is
not authorized to use. Since the memory is given in chunks, as explained in Section 5.3,
the segmentation fault occurs when the program accesses a memory address beyond the
currently authorized segment. A program may access all the addresses inside the segments
given to the program, and the operating system will not stop it. This does not mean that
the program is correct. We need to correct the program as soon as possible.

Programming Problems and Debugging 111

7.2.3 Detect Invalid Memory Accesses

Another way to detect invalid memory accesses is using valgrind. The log file from
valgrind can be quite long. You should go to the very last line. In this example, the line
says:

ERROR SUMMARY: 59745 errors from 4 contexts (suppressed: 2 from 2)

Do not be too concerned about the number of errors detected. Fixing one error will Often
fix many of the other detected errors. This is because a single error can be hit many times
as a program executes. Go to the very top of the log file and start looking for anything
related to the source files, i.e., mystring.c, mystring.h, and main.c. The first detected
problem related to mystring.c is:

==4238== Conditional jump or move depends on uninitialised value(s)

==4238== at 0x4008D2: my_countchar (mystring2.c:17)

==4238== by 0x400CC8: main (main.c:74)

Another detected problem is:

==4238== Conditional jump or move depends on uninitialised value(s)

==4238== at 0x4008BE: my_countchar (mystring2.c:19)

==4238== by 0x400CC8: main (main.c:74)

This is related to the problem at line 17. If we fix line 17, the problem at line 19
disappears. Some students think that accessing invalid memory is harmless as long as the
programs do not have segmentation faults. This is wrong. Allowing invalid addresses is
one of the most common security problems in software. It can allow a malicious program to
“hijack” another program. If a program accesses invalid addresses, the program’s behavior is
not defined. That means it may work a hundred or a thousand times, and then mysteriously
fail. The same program may fail when using a different compiler, or run on a different
computer.

Please remember that testing can demonstrate that something is wrong; however, testing
cannot demonstrate that everything is right. As we see, Linux stops the program when str

is already very far away from valid addresses. Thus, we cannot rely on testing exclusively.
Instead, we need to use many methods to prevent and detect mistakes.

“Which one should I use, gdb or valgrind?”, you may ask. The answer is both. These
two tools serve different purposes. Choosing gdb vs. valgrind is like choosing a hammer vs.
a screw driver. Use the right tool for the job: gdb is interactive, and allows a programmer
to see the program’s execution line by line. In contrast, valgrind runs the program until it
stops (or crashes). In general it is a good idea to use valgrind first to detect whether there
are any memory problems and then use gdb to pinpoint the problem. You should always use
valgrind to check whether your programs have invalid memory accesses. The command is:

$ valgrind –leak-check=full –tool=memcheck –verbose

What is the difference between gcc and valgrind? Doesn’t gcc also check whether a
program has problems? The gcc compiler checks the source code: i.e., it finds syntax errors.
This is a very rudimentary form of error checking. It is like a spell-checker in a document
editor. An article without any spelling error does not mean that the article makes any sense.
In similar fashion, gcc does not check what happens when the program runs. It is impossible
for gcc to check what the program does when it is running.

In contrast, valgrind is a run-time checker. The program must be run for valgrind to
check anything. This implies the following: If the program does not execute the parts of code

112 Intermediate C Programming

that have problems, then valgrind will not detect any problems. This is not a limitation in
valgrind, but more an indication of what type of tool it is. This is a limitation in how you
write test cases. You need to think how your program may fail and then test the potential
problems. Good tests can make valgrind invaluable. Note that this is another reason why
passing test cases does not guarantee that the program is correct. If the test cases do not
test the problematic parts, then the problems are undetected.

How could it be possible that some parts of the program are not executed? This is
because most programs have many if conditions. It is extremely difficult—practically
impossible—to design test cases that can check every combination of these conditions. For
each if condition, the condition can be true or false. Hence, there are two possibilities. If
there are n if conditions and they are independent, there are 2n possibilities. As a point of
reference, in one weekly homework for my class at Purdue University, the sample solution
has 25 if conditions, about 225= 34 million possibilities. Can you create 34 million test
cases? Obviously a brute-force approach is impossible, but the task is significantly eased by
examining the logic of the program. Even though there are 25 if conditions in the sample
solution mentioned, there are not 34 million paths through the code because some condi-
tions are related. Careful reasoning is required to make this type of analysis. It is certainly
possible that some problems are not detected when this homework assignment is graded.

Chapter 8

Heap Memory

8.1 Creating Array with malloc . 113
8.2 The Stack and the Heap . 115
8.3 Functions that Return a Heap Address . 118
8.4 Two-Dimensional Arrays in C . 119
8.5 Pointers and Arguments . 122

Chapter 2 describes one type of memory: stack memory (also called the call stack). Stack
memory follows a simple rule: first in, last out. The call stack is automatically managed by
the code generated by the compiler. Every time a function is called, a new frame is pushed.
Every time a function ends, the frame is popped. Programmers have no direct control
over this process. One consequence is that a function may read from or write to memory
addresses in lower frames; however, a function can never “look upward” into memory above
its frame. This is because whenever a function is actively executing, there are not valid
memory addresses “above” it.

This is natural and convenient for a lot of programming tasks; however, sometimes
programmers need more control over memory. They want to be able to allocate memory
when necessary and release memory when the allocated memory is no longer needed. For
this purpose, computers have another type of memory: heap memory.

Computers also have the third type of memory where the compiled code resides. In
general, this memory cannot be modified. Programs can access only stack memory and
heap memory. Thus, the rest of this book does not explain the memory where programs are
stored.

8.1 Creating Array with malloc

If a called function can access the frame of the calling (lower) function through pointers,
would this be sufficient? No. At the bottom of the call stack is the frame of the main

function. Can a program store all of its data in the main function, since this data can be
accessed by all the other functions? This would make the main function rather complex for
even a simple program. We would need to consider every possible way the data could be
read or written and the main would have to manage space for all of the data. Even if we
are willing to do this analysis and write this main function, we still have problems. Most
programs take some form of input. For example, we may need to read an image file from a
disk. At the time the code is being written, we cannot know precisely what input will be
given to the program. In particular, we do not know the size of the input. We cannot write
a program that can handle the inputs whose size is greater than our expectation. This is
a severe limitation. We could create an array in main and make its size greater than all

113

114 Intermediate C Programming

possible input size. This is very inefficient. What we need is a way to allocate memory as
needed while the program is running.

Before talking about how to use heap memory, let’s review how to create a fixed-size
array. The following example creates an array of six integers and assigns the first three
elements to 11, −29, and 74.

int arr1 [6];1

arr1 [0] = 11;2

arr1 [1] = -29;3

arr1 [2] = 74;4

This array is stored inside a frame in the call stack. The values of the other three elements
(arr[3], arr[4], and arr[5]) are still garbage. To create a fixed-size array, the array’s size
must be specified in the source code. This is problematic because the size may be unknown
at the time the code is written. For example,

int num;1

printf("Please enter a number: ");2

scanf("%d", & num);3

Note that the number is given after the program starts running. We can use this number
to create an integer array with num elements. The program uses malloc to create the array:

int * arr2;1

arr2 = malloc(num * s i z eo f (int)); // no * inside sizeof2

Notice * in front of arr2. The value of num is entered by a user. To create an array
of integers, an integer pointer is needed. This allocation must use sizeof(int) because
the size of an integer can be different on different machines. If sizeof(int) is 4 (typical
among computers), then the program allocates num * 4 bytes of memory. If sizeof(int)
is 2 (common in some types of micro controller), then the program allocates num * 2 bytes
of memory. The type of the pointer must match what is in sizeof(...). The following
example has mistakes.

int * arr3;1

arr3 = malloc(length * s i z eo f (char)); /* WRONG */2

/* types do not match , one is int , the other is char */3

int * arr4;4

arr4 = malloc(length * s i z eo f (double)); /* WRONG */5

/* types do not match , one is int , the other is double */6

The program will behave strangely when types do not match. Programs should check
whether malloc succeeds. If it fails, then it is NULL. Programs should handle this prob-
lem before doing anything else. Why would malloc fail? This happens when the system
cannot provide the requested memory. Perhaps the request is unreasonably large. C uses
NULL to indicate an invalid value for a memory address.

int * arr5;1

arr5 = malloc(length * s i z eo f (int));2

i f (arr5 == NULL)3

{4

// malloc has failed , handle the problem here.5

}6

If a program allocates memory successfully, then the program can assign values to the
elements in the same way as an array:

Heap Memory 115

arr2 [0] = 11;3

arr2 [1] = -29;4

arr2 [2] = 74;5

When using malloc to allocate an array, the memory addresses of the elements are
contiguous. When the memory is no longer needed, the program must release (also called
free) the memory by calling:

free(arr2);6

It is impossible to release only one part of the memory. All the memory allocated in a given
call to malloc must be freed at once. One common mistake is assuming that arr2’s value
becomes NULL. This is wrong. The value of arr2 is still a memory address but that address
is no longer valid. It is a good habit to type free right after typing malloc so that it is not
forgotten. After typing malloc and free next to each other, insert code between them:

int * an_array = malloc(some_size * s i z eo f (int));1

/* insert code here to use the array */2

free(an_array);3

To use malloc, it is necessary to specify the number of elements in the array. When
using free, you cannot specify the number of elements. The malloc and free function
work together, and free knows how much memory should be freed. If a program calls
malloc without calling free, then the program has a memory leak. Memory leaks are
serious problems because a program has a limited amount of memory that can be allocated
by calling malloc. The limit depends on the hardware and also the operating systems. Later
in this chapter, we will explain how to use valgrind to detect memory leaks.

8.2 The Stack and the Heap

When a program declares a pointer, the pointer exists somewhere in the call stack. For
example,

int * arr2;1

Symbol Address Value
arr2 200 ?

The address is arbitrarily chosen to be 200. If you prefer, you can choose 400, 5000,
or whatever number. Even though the pointer is on the stack, we can create an array on
the heap. Remember that the pointer’s address and value are independent. This example
allocates memory for an array of 6 integers. This is how to create the array on the heap:

arr2 = malloc (6 * s i z eo f (int));2

Section 4.8 mentioned that different types have different sizes. That is the reason why
malloc is used in conjunction with sizeof. From now on, let us assume that each integer
requires 4 bytes and the addresses of two adjacent array elements is different by 4. Calling
malloc returns a valid heap address to a piece of memory large enough to store 6 integers,
and arr2’s value stores that address. Heap memory is pretty far away from the stack
memory. In this example, we use 10000 for the heap address. The memory is uninitialized,
so we use “?” for each integer’s value.

116 Intermediate C Programming

Symbol Address Value Address Value
arr2 200 10000 10020 ?

10016 ?
10012 ?
10008 ?
10004 ?
10000 ?

(a) Stack Memory (b) Heap Memory

The following assignment changes the first element of the array:

arr2 [0] = 11;3

This causes the heap memory at 10000 to change:

Symbol Address Value Address Value
arr2 200 10000 10020 ?

10016 ?
10012 ?
10008 ?
10004 ?
10000 11

(a) Stack Memory (b) Heap Memory

arr2 [2] = 74;4

This changes the heap memory at 10008:

Symbol Address Value Address Value
arr2 200 10000 10020 ?

10016 ?
10012 ?
10008 74
10004 ?
10000 11

(a) Stack Memory (b) Heap Memory

How does this work? What happens when the program executes this line?

arr2 [2] = 74;4

This is what this statement does precisely:
1. Takes arr2’s value as an address. In this example the value is 10000.
2. The index is 2, so sizeof(int) × 2 = 4 × 2 = 8 is added to 10000 and the new

address is 10008.
3. Since this is at the left of the assignment, the value at the address of 10008 is changed

to 74.
The following example creates an array whose length is determined by argc. The pro-

gram converts the command line arguments—the elements of argv—into integers. This is
necessary because each element of argv is a string. Then, the program adds up the integers’
values and prints the sum.

Heap Memory 117

// malloc.c1

// create an array whose size is specified at run time.2

// The array’s elements are the command line arguments.3

// The program adds the elements and prints the sum.4

#include <stdio.h>5

#include <stdlib.h>6

int main(int argc , char * argv [])7

{8

int * arr2;9

int iter;10

int sum = 0;11

i f (argc < 2)12

{13

printf("Need to provide some integers .\n");14

return EXIT_FAILURE;15

}16

arr2 = malloc(argc * s i z eo f (int));17

i f (arr2 == NULL)18

{19

printf("malloc fails.\n");20

return EXIT_FAILURE;21

}22

/* iter starts at 1 because argv [0] is the program ’s name */23

for (iter = 1; iter < argc; iter ++)24

{25

arr2[iter] = (int) strtol(argv[iter], NULL , 10);26

}27

printf("The sum of ");28

for (iter = 1; iter < argc; iter ++)29

{30

printf("%d ", arr2[iter]);31

sum += arr2[iter];32

}33

printf("is %d.\n", sum);34

35

free (arr2);36

return EXIT_SUCCESS;37

}38

The program uses strtol to convert the strings into integers. Some books suggest using
atoi but strtol is preferred for two reasons: (i) strtol is more general because it is not
limited to decimal bases. For example, strtol can be used to convert binary numbers, or
hexadecimal (base 16) numbers. (ii) More important, strtol allows the calling program to
check whether the conversion fails. The conversion fails when the string contains no number.
In contrast, atoi provides no information about whether the conversion fails. Use gcc to
convert the program into an executable file called malloc:

$ gcc -Wall -Wshadow malloc.c -o malloc

The following shows two examples running this program. If an argument is not an integer
(“hello” and “C” in the second example), then the value of that argument is zero.

$./malloc 5 8 −11 4 3 27

118 Intermediate C Programming

The sum of 5 8 −11 4 3 27 is 36.

$./malloc 7 9 hello 1 6 C 2 4 8

The sum of 7 9 0 1 6 0 2 4 8 is 37.

Here is a review of the relationships between arrays and pointers:
• An array always means a pointer. The name of the array is the address of the first

element.
• An index ([and]) removes one asterisk from the pointer type. If arr’s type is int *,

then arr[3] is int.
• A pointer is not necessarily an array. For example,

int * ptr;1

int a = 5;2

ptr = & a;3

In this case, ptr is a pointer but there is no array. A pointer stores a memory address.

8.3 Functions that Return a Heap Address

A function may return the address of heap memory. For example,

int * f1(int n)1

{2

int * ptr;3

ptr = malloc (n * s i z eo f (int));4

return ptr;5

}6

void f2(void)7

{8

int * arr;9

arr = f1(6);10

/* return location */11

arr [4] = 7;12

free (arr);13

}14

Let’s consider the call stack just before f1 returns ptr:

Symbol Address Value Address Value
ptr 103 10000 10020 ?

value address 102 100 10016 ?
return location 101 line 11 10012 ?

arr 100 ? 10008 ?
10004 ?
10000 ?

(a) Stack Memory (b) Heap Memory

After f1 returns, this is what is in the call stack and heap memory:

Heap Memory 119

Symbol Address Value Address Value
arr 100 10000 10020 ?

10016 ?
10012 ?
10008 ?
10004 ?
10000 ?

(a) Stack Memory (b) Heap Memory

The allocated heap memory is still available because the program has not called free

yet. The stack variable ptr, declared on line 3, is destroyed when f1 returns, because ptr

is on the stack. However, the allocated heap memory is available until it is freed. This is
a fundamental difference between stack and heap memory. Heap memory is more flexible.
The statement,

arr [4] = 872;1

changes an element in the array. Now the stack and heap memory look as follows:

Symbol Address Value Address Value
arr 100 10000 10020 ?

10016 872
10012 ?
10008 ?
10004 ?
10000 ?

(a) Stack Memory (b) Heap Memory

Before f2 finishes, it must call free. Otherwise, the program leaks memory. The pur-
pose of this example is to show that memory allocated by malloc can be passed between
functions. Please be aware that this example does not follow the principle mentioned in
Section 8.1. In this example, malloc and free are called in two different functions. This is
sometimes necessary, but also error-prone. It is easy to forget calling free in f2 because f2

does not call malloc. We have used 10000 as the memory address returned by malloc. In
a real computer, the address can change every time the program runs and the address will
likely be a very large number.

8.4 Two-Dimensional Arrays in C

We have seen two-dimensional arrays already. In Section 6.3, argv is an array of strings.
Each string is an array of characters. Thus, argv is a two-dimensional array. The strings may
have different sizes. The characters in each string are stored contiguously, and the string
pointers are stored contiguously. A C program may create a fixed-size two-dimensional array
in the following way:

int arr2d [8][3];1

// an array with 8 rows and 3 columns2

arr2d [0][2] = 4;3

// assign 4 to the third column of the first row4

120 Intermediate C Programming

arr2d [3][1] = 6;5

// assign 6 to the second column of the fourth row6

In this example, the first dimension has eight rows and the indexes are between zero
and seven (inclusively). The second dimension has three columns; the indexes are between
zero and two. A two-dimensional array is like a matrix.

It is a little more complicated creating a two-dimensional array whose size is known only
at run time by calling malloc. We first create a one-dimensional array of integer pointers
(int *) and then each pointer is used to create an integer array. Fig. 8.1 illustrates this
concept. The first step creates an array of integer pointers. In the second step, each pointer
stores the address of the first element in a one-dimensional integer array. The addresses of
&arr2d[0] and &arr2d[1] are adjacent. However, the values of arr2d[0] (corresponding
to &arr2d[0][0]) and arr2d[1] (corresponding to &arr2d[1][0]) are likely far apart.

arr2d

add2d[0][0] add2d[0][1] add2d[0][2] arr2d[0]

arr2d[1]

arr2d[2]

arr2d[3]

arr2d[4]

arr2d[5]

arr2d[6]

arr2d[7]

add2d[1][0] add2d[1][1] add2d[1][2]

add2d[2][0] add2d[2][1] add2d[2][2]

add2d[3][0] add2d[3][1] add2d[3][2]

add2d[4][0] add2d[4][1] add2d[4][2]

add2d[5][0] add2d[5][1] add2d[5][2]

add2d[6][0] add2d[6][1] add2d[6][2]

add2d[7][0] add2d[7][1] add2d[7][2]

FIGURE 8.1: A two-dimensional array has an array of pointers as the first dimension.
Each element points to an array.

An array’s name stores the address of the first element. Therefore, the type of a one-
dimensional array of integers is an integer pointer. If we want to create an array using
malloc, we need to use int *.

int arr [6]; /* an array of fixed size , 6 elements */1

int * arr2; /* an integer pointer */2

arr2 = malloc (9 * s i z eo f (int)); /* 9 elements */3

arr2 [4] = 19; /* arr2 [4] is an integer */4

free(arr2);5

Imagine a new type called one d array. A two-dimensional array would be an array of
one d array. To create this two-dimensional array, malloc is used:

one_d_array * arr2d;1

arr2d = malloc(numrow * s i z eo f (one_d_array));2

The one-dimensional array is itself a pointer to integer; thus, one d array should be
replaced by int *. Consequently, the type of arr2d is int * *. That means that the arr2d
is pointing to int *, and indeed, the first element of arr2d has type int *.

Heap Memory 121

int * * arr2d;1

arr2d = malloc(numrow * s i z eo f (int *));2

This only allocates enough space for the pointers: arr2d[i] is a pointer to an integer.
There is no space for the integers yet. It is necessary to allocate the memory for the integers
separately:

for (row = 0; row < NUMROW; row ++)3

{4

arr2d[row] = malloc(NUMCOLUMN * s i z eo f (int));5

}6

These arrays must be freed later in the program.

for (row = 0; row < NUMROW; row ++)7

{8

free(arr2d[row]);9

}10

free(arr2d); // must be after free(arr2d[row])11

If we freed arr2d before freeing the individual rows, then attempting to free the rows
would be an error. Thus, malloc and free are always in the reverse order: malloc must
be followed by free, and the memory must not be accessed after a call to free.

This is the code implementing this concept.

/* twodarray.c1

purpose: show how to create a two -dimensional array2

The size of the array is 8 rows x 3 columns3

*/4

#include <stdio.h>5

#include <stdlib.h>6

#define NUMROW 87

#define NUMCOLUMN 38

int main(int argc , char * argv [])9

{10

int * * arr2d;11

int row;12

/* step 1: create an array of integer pointers */13

arr2d = malloc(NUMROW * s i z eo f (int *));14

for (row = 0; row < NUMROW; row ++)15

{16

/* step 2: for each row (i.e., integer pointer),17

create an integer array */18

arr2d[row] = malloc(NUMCOLUMN * s i z eo f (int));19

}20

/* now , the two -dimensional array can be used */21

arr2d [4][1] = 6;22

arr2d [6][0] = 19;23

/* the first index can be 0 to 7 (inclusive) */24

/* the second index can be 0 to 2 (inclusive) */25

26

/* memory must be released in the reverse order */27

for (row = 0; row < NUMROW; row ++)28

{29

122 Intermediate C Programming

/* release the memory for each row first */30

free (arr2d[row]);31

}32

/* now release the array of integer pointers */33

free (arr2);34

return EXIT_SUCCESS;35

}36

After creating the two-dimensional array, it can be used in the same way as a fixed-size
array. Before the program ends, the allocated memory must be released. Memory must be
released in the reverse order that it was allocated. Please be careful about the types used
in creating arrays.

8.5 Pointers and Arguments

A function argument can be a pointer that stores the address in either stack memory
or heap memory. The following example passes an array allocated on the heap memory to
a function:

// argument.c1

// pass the address of heap memory as a function argument2

3

#include <stdio.h>4

#include <stdlib.h>5

int sum(int * array , int length)6

{7

int iter;8

int answer = 0;9

for (iter = 0; iter < length; iter ++)10

{11

answer += array[iter];12

}13

return answer;14

}15

int main(int argc , char * argv [])16

{17

int * arr;18

int iter;19

int length = 12;20

int total;21

arr = malloc(length * s i z eo f (int));22

i f (arr == NULL)23

{24

printf("malloc fails.\n");25

return EXIT_FAILURE;26

}27

for (iter = 0; iter < length; iter ++)28

{29

arr[iter] = iter;30

Heap Memory 123

}31

total = sum(arr , length);32

printf("Total is %d.\n", total);33

free (arr);34

return EXIT_SUCCESS;35

}36

In this example, arr is passed to function sum as an argument. The sum function itself
does not need to know whether the value in array is an address in stack memory or heap
memory. The function only needs to know that array contains a valid address somewhere
in memory. The address is copied when it is passed as the argument array in the function
called sum. The call stack and the heap memory look like the following inside the sum

function, just before the for block starts:

Frame Symbol Address Value Address Value

sum

answer 211 0 10044 11
iter 210 - 10040 10
length 209 12 10036 9
array 208 10000 10032 8

value address 207 205 10028 7
return location 206 line 33 10024 6

main

total 205 ? 10020 5
length 204 12 10016 4
iter 203 13 10012 3
arr 202 10000 10008 2
argv 201 - 10004 1
argc 200 - 10000 0

(a) Stack Memory (b) Heap Memory

Inside sum, array[0] refers to the value stored at 10000 and it is 0. Similarly, array[7]
refers to the value stored at 10028 (10000 + 7 × sizeof(int)) and it is 7.

In the following example, the function multi2 doubles the array elements:

// double.c1

#include <stdio.h>2

#include <stdlib.h>3

void multi2(int * array , int length)4

{5

int iter;6

for (iter = 0; iter < length; iter ++)7

{8

array[iter] *= 2;9

}10

}11

int main(int argc , char * argv [])12

{13

int * arr;14

int iter;15

int length = 12;16

arr = malloc(length * s i z eo f (int));17

i f (arr == NULL)18

{19

124 Intermediate C Programming

printf("malloc fails.\n");20

return EXIT_FAILURE;21

}22

for (iter = 0; iter < length; iter ++)23

{24

arr[iter] = iter;25

}26

27

printf("Original array: ");28

for (iter = 0; iter < length; iter ++)29

{30

printf("%2d ", arr[iter]);31

}32

printf("\n");33

34

multi2(arr , length);35

36

printf("New array: ");37

for (iter = 0; iter < length; iter ++)38

{39

printf("%2d ", arr[iter]);40

}41

printf("\n");42

43

free (arr);44

return EXIT_SUCCESS;45

}46

The output of this program is shown below:

Original array: 0 1 2 3 4 5 6 7 8 9 10 11

New array: 0 2 4 6 8 10 12 14 16 18 20 22

Remember free must be called before the program ends, otherwise, the program has
a memory leak. Also, to make the program easier to understand and easier to debug, the
program should call malloc and free in the same function. If a program calls malloc and
free in different functions, then it becomes much harder to track whether:

1. memory allocated by calling malloc is released by calling free later or,
2. memory released by calling free has been allocated by calling malloc earlier.

Chapter 9

Programming Problems Using Heap
Memory

9.1 Sorting an Array . 125
9.1.1 Generating Test Input and Expected Output . 125
9.1.2 Redirecting Input . 127
9.1.3 Sorting Integers . 129
9.1.4 Using valgrind to Detect Memory Leaks . 132

9.2 Sort Using qsort . 133
9.2.1 qsort . 133

9.2.2 The Comparison Function . 135
9.2.3 Execution Examples . 137
9.2.4 Sorting Strings . 138

9.1 Sorting an Array

This problem asks you to write a program that reads integers from a file, sorts the
numbers, and writes the sorted numbers out to another file.

9.1.1 Generating Test Input and Expected Output

The previous chapter explained why testing does not guarantee that a program is correct:
There are too many possible cases. Nevertheless, testing still plays a central role in software
development, because testing helps detect problems. Before writing a program, or even a
single function, software developers should always think about how to test it. Often this
involves creating test inputs by hand, based on an understanding of where the weakness in
the function or program may be. This can be a lot of work, however, and it is often useful
to write small programs to generate test case input.

To test sorting, first write a program that generates random integers. To make this
program more flexible, it has one command-line argument: argv[1] tells the program how
many numbers should be generated. The program uses a random number generator. In C,
the function rand returns a number between 0 and the largest integer. These numbers are
“random” because it is difficult to predict which number will appear next. If we call rand
multiple times, it will return an unpredictable sequence of numbers. You can increase the
“randomness” by giving a seed. The seed is used to initialize the random number generator.
If we give the same seed in two different runs of the program, then the program generates
the same sequence of numbers. This can be useful for testing and debugging. If the seed
changes, the sequence also changes. The function srand sets the seed. Linux has a function
time. This function returns the number of seconds since 00:00:00 January 1st 1970. If srand
is called with time as an argument, then the seed changes every second. This is good enough
for many applications that require sequences of random numbers. This is not, however, truly

125

126 Intermediate C Programming

random since the seed is predictable. Generating truly random numbers is beyond the scope
of this book. This is the program for generating test inputs:

// testgen.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <time.h>4

#include <string.h>5

#define RANGE 100006

int main(int argc , char * * argv)7

{8

i f (argc < 2)9

{10

printf("need a positive integer\n");11

return EXIT_FAILURE;12

}13

int num = strtol(argv[1], NULL , 10);14

i f (num <= 0)15

{16

printf("need a positive integer\n");17

return EXIT_FAILURE;18

}19

srand(time(NULL)); // set the seed20

int count;21

for (count = 0; count < num; count ++)22

{23

printf("%d\n", rand() % RANGE);24

}25

return EXIT_SUCCESS;26

}27

This problem requires the output to be sorted. If the generator produces a sequence of
random numbers, how can we get the correctly sorted result without first knowing that the
final program is correct? This is a circular problem: We do not have the program correctly
written yet so we do not have the sorted numbers. Without sorted numbers, we cannot check
whether the program is correct. Fortunately, we can use the sort program in Linux. The
sort program treats the values as strings; “9” is greater than “10” because the character
’9’ is greater than the character ’1’. Adding -n after sort treats the values as numbers, and
9 is smaller than 10. Below is the Makefile—it calls the sort program in Linux.

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

3

testgen: testgen.c4

$(GCC) testgen.c -o testgen5

6

inputgen: testgen7

./ testgen 6 > input68

./ testgen 20 > input209

./ testgen 50 > input5010

./ testgen 100 > input10011

sort -n input6 > expected612

sort -n input20 > expected2013

Programming Problems Using Heap Memory 127

sort -n input50 > expected5014

sort -n input100 > expected10015

16

clean:17

/bin/rm testgen input* expected*18

Now if we type:

$ make inputgen

eight files will be generated: Four are called input and the other four are called expected.
The input files have numbers in some random order. The numbers in the expected files are
sorted.

9.1.2 Redirecting Input

Section 1.2 describes how to use redirection for program outputs. This program uses
redirection for inputs. When a program calls scanf, the program waits for the user to
enter data from the keyboard. If we execute the program by adding < and a file name, the
program reads data from the file instead of from the keyboard. Below is the main function
for reading the input file. The purpose is to test whether the function can read from a file.

/*1

* main.c2

*/3

#include <stdio.h>4

#include <stdlib.h>5

#include <string.h>6

#include "mysort.h"7

int main(int argc , char * * argv)8

{9

i f (argc != 2)10

{11

return EXIT_FAILURE;12

}13

int number = strtol(argv[1], NULL , 10);14

int ind;15

for (ind = 0; ind < number; ind ++)16

{17

int val;18

scanf("%d", & val);19

printf("%d\n", val);20

}21

return EXIT_SUCCESS;22

}23

Below is the Makefile. Please pay special attention to the part for testinput.

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

OBJS = mysort.o main.o3

HDRS = mysort.h4

5

128 Intermediate C Programming

mysort: $(OBJS) $(HDRS)6

$(GCC) $(CFLAGS) $(OBJS) -o $@7

8

.c.o:9

$(GCC) $(CFLAGS) -c $*.c10

11

testinput: mysort12

./ mysort 6 < input6 > temp613

diff temp6 input614

./ mysort 20 < input20 > temp2015

diff temp20 input2016

./ mysort 50 < input50 > temp5017

diff temp50 input5018

./ mysort 100 < input100 > temp10019

diff temp100 input10020

21

testgen: testgen.c22

$(GCC) testgen.c -o testgen23

24

inputgen: testgen25

./ testgen 6 > input626

./ testgen 20 > input2027

./ testgen 50 > input5028

./ testgen 100 > input10029

sort -n input6 > expected630

sort -n input20 > expected2031

sort -n input50 > expected5032

sort -n input100 > expected10033

34

clean:35

/bin/rm testgen input* expected* temp*36

If we type:

$ make testinput

it ensures that “mysort” has been compiled, and then runs the program in such a way that
the program reads input from an input file, instead of from the keyboard.

$./mysort 6 < input6 > temp6

The argument argv[1] is the number of integers. The actual values are stored in the
input file. In a later chapter we will explain how to get the number of integers from the file
itself without using argv[1]. With < input6, the input comes from the file called input6,
and not from the keyboard. With > temp6, the output is stored in the file called temp6,
and not printed to the computer screen. Using files like this helps us repeat the same tests
easily. The next line,

$ diff temp6 input6

checks whether the program reads the input values correctly. If the program is incorrect,
the values in temp6 and input6 are different. It is important to ensure the input values are
correct before sorting the values. If the program cannot read the input values correctly, the
program should be corrected before attempting to sort the values.

Programming Problems Using Heap Memory 129

9.1.3 Sorting Integers

The header file declares the sort function:

// mysort1

#ifndef MYSORT_H2

#define MYSORT_H3

void mysort(int * arr , int len);4

#endif5

Many sorting algorithms have been developed. In this example, we use selection sort. It
selects the smallest value among the array elements and then puts it at the beginning of the
array. Then, it selects the second smallest value and puts it as the second element of the
array. This process continues until reaching the end of the array. Here is an implementation
of the selection sort algorithm:

/*1

* mysort.c2

*/3

#include <stdio.h>4

s ta t i c void swap(int * a, int * b)5

{6

int t = * a;7

* a = * b;8

* b = t;9

}10

11

void mysort(int * arr , int len)12

{13

/* in each iteration , find the smallest value and14

put it at the beginning of the array */15

int ind1;16

int ind2;17

for (ind1 = 0; ind1 < len; ind1 ++)18

{19

int minind = ind1;20

for (ind2 = ind1 + 1; ind2 < len; ind2 ++)21

{22

i f (arr[minind] > arr[ind2])23

{24

minind = ind2; // index of the smallest value25

}26

}27

i f (minind != ind1)28

{29

// move the smallest value to the correct location30

swap(& arr[ind1], & arr[minind]);31

}32

}33

}34

In mysort, ind1 is the counter for each iteration. When ind1 is zero, the smallest element
is moved to the beginning of the array. When ind1 is one, the second smallest element is
moved to the second element of the array. The value ind1 separates the array into two

130 Intermediate C Programming

parts: the part before ind1 has been sorted and the part after ind1 has not been sorted. To
sort the second part, we select the smallest inside this part and move it to the beginning of
the second part. Then, ind1 increases, effectively shrinking the second part.

Line 20 initializes minind to ind1. This stores the index of the smallest element seen
so far in the second part of the array. Then, lines 21 to 27 find the index of the smallest
element in the second part of the array. Lines 28 to 32 move the smallest value to the correct
place in the array. This is achieved by swapping the smallest value from its current location
to the correct location. The number of comparisons (line 23) depends on the number of
elements and is independent of the actual values of the elements.

This program uses the same swap function described in Section 4.4. The swap function
is marked static. A static function can be called by functions in the same file only. A static
function is invisible outside this file.

Consider the following example: The input values are 1694, 8137, 609, 7118, 5614, and
8848. The smallest value is the third element (index is 2). The first iteration of ind1 swaps
the first (index is 0) and the third elements and now the array’s elements are 609, 8137,
1694, 7118, 5614, and 8848. The following table shows the array’s elements in each iteration,
just before calling swap:

ind1 minind Sorted Unsorted
0 2 1694 8137 609 7118 5614 8848
1 2 609 8137 1694 7118 5614 8848
2 4 609 1694 8137 7118 5614 8848
3 3 609 1694 5614 7118 8137 8848
4 4 609 1694 5614 7118 8137 8848
5 5 609 1694 5614 7118 8137 8848

This is the sorted array: 609 1694 5614 7118 8137 8848. The main function has a few
places that require explanation:
• This main function stores the data in an array. The size of the array is given by
argv[1].
• Before using argv[1], the program must check that argc is 2. If argc is 1, then
argv[1] does not exist (argv[0] does) and attempting to access argv[1] will crash
the program.

• The program uses strtol to convert argv[1] from a string to an integer.
• The main function must call malloc to allocate heap memory for the array before

reading data from the file.
• The main function must call free to release the heap memory of the array before the

program ends.

/*1

* main.c2

*/3

#include <stdio.h>4

#include <stdlib.h>5

#include <string.h>6

#include "mysort.h"7

int main(int argc , char * * argv)8

{9

i f (argc != 2)10

{11

return EXIT_FAILURE;12

}13

int number = strtol(argv[1], NULL , 10);14

Programming Problems Using Heap Memory 131

int * arr;15

arr = malloc(s i z eo f (int) * number);16

i f (arr == NULL)17

{18

return EXIT_FAILURE;19

}20

int ind;21

for (ind = 0; ind < number; ind ++)22

{23

scanf("%d", & arr[ind]);24

}25

mysort(arr , number);26

for (ind = 0; ind < number; ind ++)27

{28

printf("%d\n", arr[ind]);29

}30

free (arr);31

return EXIT_SUCCESS;32

}33

The Makefile has a section for testing. It runs the program for the four test cases and
compares the outputs with the expected results.

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

OBJS = mysort.o main.o3

HDRS = mysort.h4

5

mysort: $(OBJS) $(HDRS)6

$(GCC) $(CFLAGS) $(OBJS) -o $@7

8

.c.o:9

$(GCC) $(CFLAGS) -c $*.c10

11

test: mysort12

./ mysort 6 < input6 > output613

diff output6 expected614

./ mysort 20 < input20 > output2015

diff output20 expected2016

./ mysort 50 < input50 > output5017

diff output50 expected5018

./ mysort 100 < input100 > output10019

diff output100 expected10020

21

testgen: testgen.c22

$(GCC) testgen.c -o testgen23

24

inputgen: testgen25

./ testgen 6 > input626

./ testgen 20 > input2027

./ testgen 50 > input5028

./ testgen 100 > input10029

132 Intermediate C Programming

sort -n input6 > expected630

sort -n input20 > expected2031

sort -n input50 > expected5032

sort -n input100 > expected10033

34

clean:35

/bin/rm -f temp* testgen input*36

/bin/rm -f expected* *.o output* mysort37

As we can see, Makefile can substantially simplify testing, because it saves a lot of time
typing these commands over and over again.

9.1.4 Using valgrind to Detect Memory Leaks

Many people stop when their programs produce correct outputs; however this is prob-
lematic. Producing correct outputs is only one part of software development. We also need
to check hidden errors. Section 5.4 explained how to use valgrind to check invalid mem-
ory accesses that may result in security flaws and unpredictable behavior. We can also use
valgrind to detect memory leaks. This is the new Makefile checking memory leaks:

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

VALGRIND = valgrind --tool=memcheck --leak -check=full3

VALGRIND += --verbose --log -file=4

OBJS = mysort.o main.o5

HDRS = mysort.h6

7

mysort: $(OBJS) $(HDRS)8

$(GCC) $(CFLAGS) $(OBJS) -o $@9

10

.c.o:11

$(GCC) $(CFLAGS) -c $*.c12

13

test: mysort14

$(VALGRIND)log6 ./ mysort 6 < input6 > output615

diff output6 expected616

$(VALGRIND)log20 ./ mysort 20 < input20 > output2017

diff output20 expected2018

$(VALGRIND)log50 ./ mysort 50 < input50 > output5019

diff output50 expected5020

$(VALGRIND)log100 ./ mysort 100 < input100 > output10021

diff output100 expected10022

23

testgen: testgen.c24

$(GCC) testgen.c -o testgen25

26

inputgen: testgen27

./ testgen 6 > input628

./ testgen 20 > input2029

./ testgen 50 > input5030

./ testgen 100 > input10031

sort -n input6 > expected632

Programming Problems Using Heap Memory 133

sort -n input20 > expected2033

sort -n input50 > expected5034

sort -n input100 > expected10035

36

clean:37

/bin/rm -f temp* testgen input* expected*38

/bin/rm -f *.o output* mysort log*39

If we remove

free(arr);31

near the end of main, then the program will leak memory. The log files generated by
valgrind will show something like:

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

at the bottom. If we look backwards in the log file, we will something similar to:

==4645== 24 bytes in 1 blocks are definitely lost in loss record 1 of 1

==4645== by 0x40070F: main (main.c:16)

==4645==

==4645== LEAK SUMMARY:

==4645== definitely lost: 24 bytes in 1 blocks

The program leaks 24 bytes of memory, and the memory was allocated at line 16 in
main.c. Why does the program leak 24 bytes? The program allocates space for 6 inte-
gers by calling malloc. Each integer occupies 4 bytes so the program leaks 24 bytes. (i.e.,
sizeof(int) × 4 = 24.) If we put the free statement back, valgrind reports

All heap blocks were freed -- no leaks are possible

We should always check valgrind’s reports when writing programs. Remember that if
valgrind reports problems then the program has problems. If valgrind reports no prob-
lems, then the program may still have problems but valgrind failed to detect them.

9.2 Sort Using qsort

The previous problem asks you to write a program that sorted an array of integers.
The program uses selection sort. Even though the algorithm is easy to understand and to
implement, it is inefficient when used with large arrays. The inefficiency occurs because
the algorithm does not use the transitivity of integers. What is transitivity? Consider three
integers x, y, and z. If x > y and y > z, then x > z. C provides a function called qsort and
it uses the quick sort algorithm. It is a much faster general-purpose sorting algorithm than
selection sort because it uses transitivity to dramatically reduce the number of comparisons
between elements.

9.2.1 qsort

First, let’s examine the manual for qsort:

134 Intermediate C Programming

NAME

qsort - sorts an array

SYNOPSIS

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t Size,

int(*compar)(const void *, const void *));

DESCRIPTION

The qsort() function sorts an array with nmemb elements of size

Size. The base argument points to the start of the array.

The contents of the array are sorted in ascending order

according to a comparison function pointed to by compar, which is

called with two arguments that point to the objects being compared.

The comparison function must return an integer less than, equal

to, or greater than zero if the first argument is considered to be

respectively less than, equal to, or greater than the second. If two

members compare as equal, their order in the sorted array is

undefined.

RETURN VALUE

The qsort() function returns no value.

It is important to become comfortable with the manual pages for C functions. They may
appear terse at first, but they are well written. Their target audience is the people who have
some familiarity with C. The manual says qsort requires four arguments:

1. base: the address of the first element of the array. This should be & arr[0].
2. the number of elements (members) in the array.
3. the size of each element in bytes. If it is an integer array, this argument should be

sizeof(int). Some students write 4 and this is wrong. The size of an integer is not
necessarily 4. Your program will fail if the size is not 4.

4. a comparison function.
What is void *? Why is void * the type of base? It means that the memory address

can point to any type. This is important for a general-purpose function. Thus we can use
qsort to sort any type of array. It can be int *, or char *, or double *, as long as it is
an address of a valid array. The type being pointed to is specified indirectly by the third
argument. The third argument informs qsort of the size of each array element. Among the
four arguments, the last one requires a new concept: passing a function as an argument to
another function.

1. int(*compar)(const void *, const void *) means that this argument is the
name of a function. How do I know it is a function? Because of the parenthesis after
(*compar).

2. int before (* compar) means that the passed function must return an integer. Why
is there an asterisk? Because the name of a function is a pointer to the function.
Section 2.3 said that whenever a function is called, the return location is pushed onto
the call stack. What does this mean? Each line of a program has a location (i.e.,
an address). This address is neither in the call stack, nor in the heap. The address

Programming Problems Using Heap Memory 135

is in another part of memory that stores the compiled program’s instructions. The
instructions must have addresses because they are stored in memory. Every line of
a program is stored at a memory location. Thus, it is possible to use an address to
specify a particular line of a program. By convention, C uses the name of a function as
the address of the first line of a function. This is the reason a function can be expressed
by a pointer: The function name is the address of the first line of that function.

3. The passed function takes two input arguments. Each argument stores an address.
Again, void * means that the address can be of any type. Section 7.1.7 explains
the meaning of const. This function cannot change the value stored at the address
because const is in front of the type (even though the type is void).

Putting all these factors together, the comparison function must have the following type:

int comparefunc(const void * a, const void * b)1

9.2.2 The Comparison Function

What is the comparison function? Why is it necessary to provide a comparison function
as an argument to qsort? The goal of qsort is to sort arrays of any type. This means that
qsort needs to know how to compare two elements in an array without knowing the type.
This is not possible automatically because different types have different sizes. Moreover,
when we talk about programmer-defined structures later in this book, one structure may
contain multiple attributes. It is impossible for qsort to know how to compare programmer-
defined structures. To make it possible, programmers have to tell qsort how to compare
the elements. The comparison function can decide ascending or descending order. The com-
parison function must have the following structure:

// comparefunc.c1

int comparefunc(const void * arg1 , const void * arg2)2

{3

// convert void * to a known type (int , char , double ...)4

const type * ptr1 = (const type *) arg1;5

const type * ptr2 = (const type *) arg2;6

// get the value from the address7

const type val1 = * ptr1;8

const type val2 = * ptr2;9

// compare the value10

i f (val1 < val2)11

{ return -1; }12

i f (val1 == val2)13

{ return 0; }14

return 1;15

}16

The comparison function has three steps:
1. The arguments arg1 and arg2 point to two distinct elements in the array. If we are

sorting an array of integers, then the array elements are of type int. The pointers
to those elements must be int *. In lines 5 and 6 we convert arg1 and arg2 to the
correct type. This is called type casting. The qsort function knows the size of each
array element because the third argument provides that information.

2. After type casting, ptr1 and ptr2 have the same value (point to the same addresses)
as arg1 and arg2 respectively. The comparison function can now access the data at
those memory locations because the function has changed the pointers to the known

136 Intermediate C Programming

type. It is meaningless comparing addresses. Instead, lines 8 and 9 retrieve the values
stored at those addresses.

3. Lines 11 to 15 return a negative, zero, or positive value based on whether val1 is less
than, equal to, or greater than val2. This comparison function will cause the array
elements to be sorted in ascending order. If we want the elements to be sorted in
the descending order, then we can change lines 11 to 15 so that the function returns
positive, zero, or negative if val1 is less than, equal to, or greater than val2.

The following shows a program that uses qsort to sort an array of integers:

// compareint.c1

int comparefunc(const void * arg1 , const void * arg2)2

{3

const int * ptr1 = (const int *) arg1;4

const int * ptr2 = (const int *) arg2;5

int val1 = * ptr1;6

int val2 = * ptr2;7

i f (val1 < val2) { return -1; }8

i f (val1 == val2) { return 0; }9

return 1;10

}11

Here is the main function:

/*1

* mainqsort.c2

*/3

#include <time.h>4

#include <stdio.h>5

#include <stdlib.h>6

#include <string.h>7

#define RANGE 100008

int comparefunc(const void * arg1 , const void * arg2);9

10

void printArray(int * arr , int size)11

{12

int ind;13

for (ind = 0; ind < size; ind ++)14

{15

printf("%d ", arr[ind]);16

}17

printf("\n");18

}19

20

int main(int argc , char * * argv)21

{22

i f (argc != 2)23

{24

return EXIT_FAILURE;25

}26

int size = strtol(argv[1], NULL , 10);27

i f (size <= 0)28

{29

return EXIT_FAILURE;30

Programming Problems Using Heap Memory 137

}31

int * arr;32

arr = malloc(s i z eo f (int) * size);33

i f (arr == NULL)34

{35

return EXIT_FAILURE;36

}37

int ind;38

srand(time(NULL)); // set the seed39

for (ind = 0; ind < size; ind ++)40

{41

arr[ind] = rand() % RANGE;42

}43

printArray(arr , size);44

qsort (& arr[0], size , s i z eo f (int), comparefunc);45

printArray(arr , size);46

free (arr);47

return EXIT_SUCCESS;48

}49

9.2.3 Execution Examples

The following shows two examples of running the program for two arrays, each with
eight integers:

5045 3603 7935 2430 1019 3445 6339 95451

comparefunc: 5045 36032

comparefunc: 7935 24303

comparefunc: 3603 24304

comparefunc: 3603 79355

comparefunc: 5045 79356

comparefunc: 1019 34457

comparefunc: 6339 95458

comparefunc: 1019 63399

comparefunc: 3445 633910

comparefunc: 2430 101911

comparefunc: 2430 344512

comparefunc: 3603 344513

comparefunc: 3603 633914

comparefunc: 5045 633915

comparefunc: 7935 633916

comparefunc: 7935 954517

1019 2430 3445 3603 5045 6339 7935 954518

7529 6434 2810 3835 7986 8812 127 7131

comparefunc: 7529 64342

comparefunc: 2810 38353

comparefunc: 6434 28104

comparefunc: 6434 38355

comparefunc: 7986 88126

comparefunc: 127 7137

138 Intermediate C Programming

comparefunc: 7986 1278

comparefunc: 7986 7139

comparefunc: 2810 12710

comparefunc: 2810 71311

comparefunc: 2810 798612

comparefunc: 3835 798613

comparefunc: 6434 798614

comparefunc: 7529 798615

127 713 2810 3835 6434 7529 7986 881216

Both runs have eight integers. Before calling qsort, the numbers at line 1 are not
sorted. After calling qsort, the numbers are sorted (in the output above at lines 18 and
16 respectively). These outputs have been generated with the printf function on line 9 of
comparefunc uncommented. By printing one line per comparison made, the outputs tell us
some information about using qsort:
• The comparison function comparefunc is called 16 times in the first example and 14

times in the second example. For the selection sort, the number of comparisons is
always the same for arrays of the same size.

• Some pairs of numbers are not compared. In the first example, 1019 and 7935 are
not compared. In the second example, 127 is not compared with 7529. As mentioned
earlier, qsort uses transitivity to reduce the number of comparisons.

• When comparefunc is called the first time in either example, the first two array
elements (5045 and 3603, 7529 and 6434) are compared. When comparefunc is called
the second time in either example, the next two array elements (7935 and 2403,
2810 and 3835) are compared. However, when comparefunc is called the third time,
different pairs are compared. In the first run, the fourth is the smallest among the
first four elements. In the second run, the third is the smallest among the first four
elements. This is a property of qsort: The relative order of the elements affects which
pairs are compared.

9.2.4 Sorting Strings

The next example uses qsort to sort strings. Consider a program called sortstr printing
the command-line arguments in the ascending order. If we execute this program with the
following arguments:

$./sortstr there are several arguments in the command line

the output is

./sortstr

are

arguments

command

in

line

several

the

there

Below is the main function. The function calls qsort using argv as the argument.
1. The first argument of qsort is the address of the first element of the array of strings,

i.e., & argv[0].

Programming Problems Using Heap Memory 139

2. The second argument is the number of strings in the array and it is argc.
3. The third argument is the size of each element. Since each element is a string, the

type is char * and the size is sizeof(char *). Remember that an array of strings is
an array of pointers.

4. The last argument is the comparison function.

// mainqsortstr.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

int cmpstringp(const void *arg1 , const void *arg2);5

int main(int argc , char * *argv)6

{7

int ar;8

i f (argc < 2)9

{10

fprintf(stderr , "Usage: %s <string >...\n", argv [0]);11

return EXIT_FAILURE;12

}13

qsort (&argv[0], argc , s i z eo f (char *), cmpstringp);14

for (ar = 0; ar < argc; ar++)15

{16

printf("%s\n", argv[ar]);17

}18

return EXIT_SUCCESS;19

}20

The comparison function is similar to the one for an array of integers but the types
are different: arg1 and arg2 are the addresses of strings. Thus, their types are char * *.
Imagine that C has a type called string and arg1 and arg2 store the addresses of strings.
Thus, arg1 and arg2 are of type string *. Since string is actually char * in C, arg1 and
arg2 are of type char * *. After casting the types of arg1 and arg2, the program then
needs to get the strings from the addresses by adding * to retrieve the values stored at the
addresses. Finally, the program uses strcmp to compare the two strings.

// comparestr.c1

#include <string.h>2

int cmpstringp(const void *arg1 , const void *arg2)3

{4

// ptr1 and ptr2 are string *5

// string is char *, thus ptr1 and ptr2 are char * *6

const char * const * ptr1 = (const char * *) arg1;7

const char * const * ptr2 = (const char * *) arg2;8

const char * str1 = * ptr1; // type: string9

const char * str2 = * ptr2;10

return strcmp(str1 , str2);11

}12

Quick sort is faster than selection sort because quick sort uses transitivity. How much
faster is it? Fig. 9.1 compares the execution times for sorting arrays of different sizes. When
the number of elements increases, the execution time increases for both quick sort and
selection sort. However, the execution time for selection sort increases much faster, i.e., the
ratio increases. The ratio actually increases to infinity as the size of the array increases. This

140 Intermediate C Programming

means that no matter how fast a computer is, if an array is sufficiently large then selection
sort will behave poorly when compared to quick sort. Selection sort can be faster for small
arrays. This is because the logic of selection sort is simpler. What counts as “small” or
“large” may be empirically determined for a given computer.

(a)

(b)

FIGURE 9.1: (a) Execution time for selection sort and quick sort. (b) The ratio of the
execution time. Please note that both axes use a logarithmic scale.

To summarize, selection sort is an algorithm that selects the smallest value among the
remaining unsorted array elements in each iteration. C has a built-in function called qsort

and it can sort arrays of different types. It knows how to sort elements because programmers
tell qsort the size of each element and provide functions that compares the elements.

Chapter 10

Reading and Writing Files

10.1 Passing a File Name via argv . 141
10.2 Reading from Files . 142

10.2.1 Reading Characters: fgetc . 142
10.2.2 Reading Integers: fscanf(... %d...) . 145

10.3 Writing to Files . 147
10.4 Reading and Writing Strings . 149

We have already taken advantage of redirection to use files as inputs and outputs. This
chapter explains how to use C functions to read from or to write to files without using
redirection.

10.1 Passing a File Name via argv

A program has many ways to obtain input data, for example:
• Using scanf to get data from a user through the keyboard.
• Using scanf and redirection to get data from a file.
• Using argc and argv to get data from the command line.
• Using file operations to get data stored on a disk.
For the last option, the program must first obtain the file’s name. The file’s name is itself

a piece of data. The example below uses argv[1] as a file’s name. The program must check
whether argc is at least two to decide whether argv[1] can be used without generating a
memory error.

/*1

* checkargc.c2

*/3

#include <stdio.h>4

#include <stdlib.h>5

int main(int argc , char * argv [])6

{7

i f (argc < 2)8

{9

printf("Need to provide the file’s name.\n");10

return EXIT_FAILURE;11

}12

printf("The name of the file is %s.\n", argv [1]);13

return EXIT_SUCCESS;14

}15

141

142 Intermediate C Programming

Running the program without passing the file’s name on the command line will cause
an error message to be printed and the program returns EXIT FAILURE. Use gcc to compile
and link the program:

$ gcc -Wall -Wshadow file1.c -o file1

The program exits if running without any arguments:

$./file1

Need to provide the file’s name.

When the main function returns, the program terminates. By returning EXIT FAILURE, this
program informs the terminal that this program ends abnormally. If the file’s name is given,
then the program prints the file’s name:

$./file1 xyz

The name of the file is xyz.

10.2 Reading from Files

10.2.1 Reading Characters: fgetc

After getting the file’s name, we need to open the file for reading. This is accomplished by
calling the fopen function. The function requires two arguments. The first is the name of the
file, and the second specifies the “mode”. The mode determines how the file is opened—for
reading or for writing. They are two different ways of opening the same file. In this example,
we want to read the file, and this mode is specified by “r” in the second argument.

Calling fopen does not always open a file successfully. There are many reasons that can
make fopen fail. For example, the file may not exist, or the user running the program may
not have the permission to open the file. When fopen fails, it returns NULL. It is important
to check whether fopen returns NULL before attempting to read from or write to a file. After
opening a file, fgetc can be used to read the characters one by one.

// countchar.c1

#include <stdio.h>2

#include <stdlib.h>3

int main(int argc , char * argv [])4

{5

FILE * fptr;6

int ch;7

int counter = 0;8

i f (argc < 2)9

{10

printf("Need to provide the file’s name.\n");11

return EXIT_FAILURE;12

}13

fptr = fopen(argv[1], "r");14

i f (fptr == NULL)15

{16

Reading and Writing Files 143

printf("fopen fail.\n");17

return EXIT_FAILURE;18

}19

printf("The name of the file is %s.\n", argv [1]);20

do21

{22

ch = fgetc(fptr);23

i f (ch != EOF)24

{25

counter ++;26

}27

} while (ch != EOF);28

fclose(fptr);29

printf("The file has %d characters .\n", counter);30

return EXIT_SUCCESS;31

}32

/ * f i l e : (a) E S S ; \n } \n EOF

* f i l e : (b) E S S ; \n } \n EOF
fgetc '/'

f i l e : (c) E S S ; \n } \n EOF
fgetc '*'

(d) EOF

fgetc '\n'
(e)

fgetc EOF

FIGURE 10.1: A file is a stream. This example uses the program source code as the input
file. (a) After calling fopen, the stream starts from the very first character of the file and
ends with EOF. EOF is a special character that does not actually exist in the file, but signifies
that there is no data left in the stream. (b),(c) Each time fgetc is called, one character is
taken out of the stream. (d) After calling fgetc enough times, all the characters in the file
are retrieved. We have not yet attempted to read past the end of the file. (e) Finally, the
end of file character EOF is returned because there are no more characters in the file.

How does fgetc work? After calling fopen, fptr points to a stream of characters, as
illustrated in Fig. 10.1. This stream starts at the beginning of the file. Every time fgetc

is called, one character is taken out from the stream. If the program keeps calling fgetc,
eventually all characters are taken and the special character EOF is returned.

This program counts the number of characters. A character may be a Latin character
(’a’ to ’z’ or ’A’ to ’Z’), a digit (’0’ to ’9’), a punctuation mark (such as ’,’ and ’;’), space, or
an invisible character. At the end of each line, a new line character (’\n’) is also counted.

144 Intermediate C Programming

When the program attempts to read beyond the end of the file, fgetc returns EOF. This
character is called end of file and its symbol EOF is defined in stdio.h. If we search EOF

using Linux’ grep command:

$ grep EOF /usr/include/stdio.h

we should find

define EOF (-1)

Its value is −1. The manual for fgetc says, “fgetc() reads the next character from stream
and returns it as an unsigned char cast to an int, or EOF on end of file or error.”

What does this mean? This function reads one character from a file. This character is
treated as an unsigned character because ASCII (American Standard Code for Information
Interchange) has only positive values. Unsigned characters can have values between 0 and
255 inclusive. The function then casts the character to an integer. Why is this necessary?
Because EOF is negative and is not an unsigned character. Thus fgetc returns −1, or 0
to 255 inclusive. This guarantees that EOF can be distinguished from the valid characters
that are actually in the file. Another way to detect the end of file is by calling the function
feof. This function returns a non-zero value if the end of file has been reached. Thus we
can replace line 21 by:

while (! feof(fptr))21

and remove while (ch != EOF); at line 28.
This program reports the number of characters in the file. Suppose that the source for

this program is in the file file2.c and we compile and execute it like so:

$ gcc -Wall -Wshadow file2.c -o file2

$./file2 file2.c

The name of the file is file2.c.

The file has 656 characters.

Linux has a program called wc and it reports the numbers of lines, words, and characters
in a file. The program reports that the file2.c has 32 lines, 96 words, and 656 characters.
The wc program considers a word to be a non-zero-length sequence of characters delimited
by space.

$ wc file2.c

32 96 656 file2.c

Operating systems usually restrict the number files that a program can open at once
to ensure that one program does not use too many resources. Thus programs should call
fclose when a previously opened file is no longer needed. Just as with malloc and free,
it is a good habit to type fclose right after typing fopen and then insert appropriate
code between them. This can prevent forgetting to call fclose. In fact, fopen will allocate
memory in the program. Thus, if a program does not call fclose, then the program has
memory leak. Some students write this:

i f (fptr == NULL)15

{16

printf("fopen fail.\n");17

fclose (fptr);18

}19

Reading and Writing Files 145

This is wrong. If fptr is NULL, then fopen fails to open the file. If the file is not open,
then it cannot be closed. The documentation of fclose clearly says:

The behaviour of fclose() is undefined if the stream parameter is an

illegal pointer, or is a descriptor already passed to a previous

invocation of fclose().

Thus, fclose(NULL) is bad, since it results in unpredictable behavior. Also, note that
it is an error to close the same file pointer twice.

What is stored at the heap memory pointed by fptr? The following uses gdb to show
the contents at the memory address pointed by fptr.

(gdb) print * fptr

$2 = {_flags = -72539000, _IO_read_ptr = 0x0, _IO_read_end = 0x0,

_IO_read_base = 0x0, _IO_write_base = 0x0, _IO_write_ptr = 0x0,

_IO_write_end = 0x0, _IO_buf_base = 0x0, _IO_buf_end = 0x0,

_IO_save_base = 0x0, _IO_backup_base = 0x0, _IO_save_end = 0x0,

_markers = 0x0, _chain = 0x7ffff7dd4180, _fileno = 3, _flags2 = 0,

_old_offset = 0, _cur_column = 0, _vtable_offset = 0 ’\000’,

_shortbuf = "", _lock = 0x6020f0, _offset = -1, __pad1 = 0x0, __pad2

= 0x602100, __pad3 = 0x0, __pad4 = 0x0, __pad5 = 0, _mode = 0,

_unused2 = ’\000’ <repeats 19 times>}

As we can see, the data that the FILE * points to is complicated. Fortunately, we do
not need to know the details since they are purely internal to the C library, and should not
be modified or examined directly.

10.2.2 Reading Integers: fscanf(... %d...)

In addition to fgetc, C provides many functions for reading data from a file. One of
them is fscanf. It is very similar to scanf, except that it requires one more argument. The
first argument is a FILE pointer. The following program adds the numbers in a file.

// fscanf.c1

#include <stdio.h>2

#include <stdlib.h>3

int main(int argc , char * argv [])4

{5

FILE * fptr;6

int val;7

int sum = 0;8

i f (argc < 2)9

{10

printf("Need to provide the file’s name.\n");11

return EXIT_FAILURE;12

}13

fptr = fopen(argv[1], "r");14

i f (fptr == NULL)15

{16

printf("fopen fail.\n");17

return EXIT_FAILURE;18

}19

146 Intermediate C Programming

printf("The name of the file is %s.\n", argv [1]);20

while (fscanf(fptr , "%d", & val) == 1)21

{22

printf("%d ", val);23

sum += val;24

}25

fclose(fptr);26

printf("\nThe sum is %d.\n", sum);27

return EXIT_SUCCESS;28

}29

This program keeps reading until no more integers can be read. Each call of fscanf

function returns the number of value(s) successfully read. We can use fscanf to attempt to
read multiple values at once. This example reads only one integer at a time. The returned
value will be either 1 if a single value is successfully read, or 0 if no value can be successfully
read. This means to keep reading as long as fscanf can still find another integer in the
file. A common mistake is thinking that fscanf returns the value read from this file. This
is wrong; instead, fscanf returns how many values are read from the file. The pattern
"%d" indicates that we only attempt to read one integer. If only one integer is read, fscanf
returns 1, regardless of the integer’s value. Every time fscanf is called, the file stream
moves forward and eventually reaches the end of the file.

Suppose we have a file called intfile that stores some integers:

4 7 8

32

71

6 -2 5 8

Below is the output when we run the program with intfile as the command-line argument:

The name of the file is intfile.

4 7 8 32 71 6 -2 5 8

The sum is 139.

Compared with fgetc, fscanf has several advantages:
• When using %d, fscanf skips characters (such as space and new line ’\n’) that are

not digits.
• If two integers are separated by characters that are not digits, fscanf separates the

two integers automatically.
• When fgetc reads the first character, it is not the integer 4, but instead the character

’4’ because it is treated as a character. A character can be converted to an integer
using the ASCII table. Type

$ man ascii

into the terminal to see an ASCII table, and note that the character ’4’ has the decimal
value 52.

• If a number is greater than 9, the number has two or more digits. Using fgetc, only
one digit is read at a time. If the number is 123, then we need to call fgetc three times
in order to get the three digits. Moreover, we need to change the three characters ’1’,
’2’, and ’3’ (ASCII values 49, 50, 51) to the integer value 123 (one hundred and twenty
three). This is done by fscanf automatically.

Due to the above reasons, if a program reads integers from a file, fscanf is a better
choice than fgetc.

Reading and Writing Files 147

10.3 Writing to Files

We can use fprintf to write information to a file. It is very similar to printf; the
difference is that fprintf writes information to a file and printf writes information to the
computer screen. The following example shows how to write a program that reads integers
from two input files, adds the values, and stores the sum (another integer) into the output
file, one integer per line. This program takes three command-line arguments:
• argv[1]: Name of the first input file.
• argv[2]: Name of the second input file.
• argv[3]: Name of the output file.
Each input file contains some integers. It is possible that several integers are in the same

line separated by space. It is also possible that the two files contain different numbers of
integers. If this happens, after running out of the integers from the shorter file, the program
copies the remaining integers from the longer input file to the output file. The program
does not know how many integers are stored in either file. The program ignores space in
each line and it also ignores empty lines. For simplicity, the program does not not consider
overflow or underflow of integers.

These are the two sample input files:

6255 70771

69652

3474 3003

4334 53864

7380 66105

15816

7

99558

8813 2379

10

7484 350211

4864 47841

8816 81132

3895 86773

70264

5

1937 12826

86387

8

9561 2391 5681 84529

498 9070 4930 877510

670 521 358211

12

864413

The output file should be:

111191

118612

157813

115874

41955

130116

124127

93178

78929

1021910

1951611

1120412

591813

1593614

400015

148 Intermediate C Programming

907016

493017

877518

67019

52120

358221

864422

The following program solves this problem:

// addint.c1

#include <stdio.h>2

#include <stdlib.h>3

int main(int argc , char * argv [])4

{5

i f (argc < 4) // need two inputs and one output6

{7

return EXIT_FAILURE;8

}9

FILE * fin1;10

FILE * fin2;11

// open the two input files12

fin1 = fopen(argv[1], "r");13

i f (fin1 == NULL) // fail to open14

{15

return EXIT_FAILURE;16

}17

fin2 = fopen(argv[2], "r");18

i f (fin2 == NULL)19

{20

fclose (fin1); // need to close opened file21

return EXIT_FAILURE;22

}23

// open the output file24

FILE * fout;25

fout = fopen(argv[3], "w");26

i f (fout == NULL)27

{28

fclose (fin1);29

fclose (fin2);30

return EXIT_FAILURE;31

}32

33

int val1;34

int val2;35

int in1ok = 1; // can still read input file 136

int in2ok = 1; // can still read input file 237

// continue as long as one file still has numbers38

while ((in1ok == 1) || (in2ok == 1))39

{40

val1 = 0; // reset the values before reading from files41

val2 = 0;42

Reading and Writing Files 149

i f (fscanf(fin1 , "%d", & val1) != 1) // do not use == 043

{44

in1ok = 0; // cannot read input file 1 any more45

}46

i f (fscanf(fin2 , "%d", & val2) != 1)47

{48

in2ok = 0; // cannot read input file 1 any more49

}50

i f ((in1ok == 1) || (in2ok == 1))51

{52

fprintf(fout , "%d\n", val1 + val2); // save the sum53

}54

}55

/* close the files */56

fclose (fin1);57

fclose (fin2);58

fclose (fout);59

60

return EXIT_SUCCESS;61

}62

Line 6 checks whether enough arguments have been provided. Lines 13 to 32 open the
files. If fopen fails, then the program returns EXIT FAILURE. Please remember to close all
successfully opened files; otherwise, the program leaks memory allocated by fopen. At line
21, the program has failed to open the second file, and thus needs to close the first opened
file before returning. The condition at line 39 means “continue if one (or both) of the files
still has numbers”. This handles the situation when the two files have different numbers of
integers. The variables in1ok and in2ok are updated at lines 45 and 49.

Note that when a file reaches its end, fscanf returns EOF, and not zero. A common
mistake at lines 43 and 47 is using == 0. Since EOF is −1, if we replace != 1 by == 0 at
lines 43 and 47 then the program will enter an infinite loop. If the program reads successfully
from at least one of the two files, the program writes the sum to the output file. Lines 41 and
42 reset the values to zero. This is necessary because one file may have already reached the
end, in which case calling fscanf will not update one of val1 and val2. Without resetting
the values we get the wrong answer when one file is longer than the other.

This program specifically does not consider overflowing or underflowing of integers. What
does this mean? When a program creates an integer variable, the size of the variable is fixed
(dependent on the machine). Suppose an integer has 4 bytes, i.e., sizeof(int) is 4. One
byte is 8 bits and each bit can hold either 0 or 1. Thus, a 4-byte integer can hold 32 bits,
namely 232 possible values. The possible values include both positive and negative integers.
An integer can hold a value between 231−1 (2147483647) and −231 (−2147483648), totally
232 possible values. If a file contains a number greater than 2147483647 or smaller than
−2147483648, fscanf will not work. Thus the behavior of the program is unspecified if the
input numbers are too large or too small. By stating this, we put the burden on the user to
ensure that the numbers are within the range.

150 Intermediate C Programming

10.4 Reading and Writing Strings

Earlier sections showed how to read characters and integers by using fgetc and fscanf.
How can a program read a string, for example, someone’s name? There are several solutions.
One solution uses fgetc reading one character at a time. Another solution uses fscanf

with %s.

// fscanfstr.c1

#include <stdio.h>2

#include <stdlib.h>3

#define MAXSIZE 64

int main(int argc , char * argv [])5

{6

FILE * fptr;7

i f (argc < 2)8

{9

printf("Need to provide the file’s name.\n");10

return EXIT_FAILURE;11

}12

fptr = fopen(argv[1], "r");13

i f (fptr == NULL)14

{15

printf("fopen fail.\n");16

return EXIT_FAILURE;17

}18

char buffer[MAXSIZE];19

while (fscanf(fptr , "%5s", buffer) == 1)20

{21

printf("%s\n", buffer);22

}23

fclose(fptr);24

return EXIT_SUCCESS;25

}26

Line 20 reads one word at a time by using %s in fscanf. The function distinguishes
words by looking for spaces and new line characters (’\n’). Adding a number between %

and s tells fscanf to limit the number of characters in a word. For example fscanf(fptr,

"%5s", buffer) limits the length of the word to 5 characters. Please remember a word is
a string and it ends with ’\0’. Thus, the length of the buffer (line 19) must be at least one
larger than the number between % and s to accommodate ’\0’. If we do not put any number
between % and s and a word in the file is long, then the program will use up the memory
space in buffer, and write past the end. When this occurs, the program’s behavior is
undefined due to invalid memory accesses. When writing programs, it is important to make
sure that the programs cannot have invalid memory accesses regardless of the input data.
Even a malicious user should not be able to cause an invalid memory access. If the input
is not checked carefully, a malicious user may, for example, enter 20,000 characters for a
person’s name. This is called the “buffer overflow attack” and is one of the most common
security attacks.

In addition to fgetc and fscanf, fgets is another function for reading data from a file.
This function takes three arguments:

Reading and Writing Files 151

1. The starting address of an array of characters to store the data.
2. The number of characters to read.
3. A FILE * to read from.
If the second argument is n, the function reads as many as n - 1 characters from the

file. The function then adds the ending character, ’\0’, automatically. The function may
read fewer characters if (i) a new line character occurs before reading n - 1 characters
or (ii) the file has reached its end. Please note that fgets does not stop when it reads a
space. It can read multiple words in the same line even though these words are separated
by one or more spaces. For fscanf(...’’%s’’ ...), the size between % and s is optional.
For fgets, the size is a required argument. If fgets succeeds in reading anything from the
file, it returns the value of the first argument, i.e., the starting address to store the data. If
fgets fails to read anything from the file, it returns NULL.

The following program reads a file line by line and counts the number of lines. We assume
that the maximum length of each line is 80 characters, i.e., at least one ’\n’ occurs within
every 80 characters.

// fgets.c1

#include <stdio.h>2

#include <string.h>3

#include <stdlib.h>4

#define MAX_LINE_LENGTH 815

// assume that the maximum length of each line is already know6

int main(int argc , char * argv [])7

{8

FILE * fptr;9

int numLine = 0; // must initialize to zero10

char oneLine[MAX_LINE_LENGTH];11

i f (argc < 2)12

// must check argc before using argv [1]13

{14

printf("Need to provide the file’s name.\n");15

return EXIT_FAILURE;16

}17

fptr = fopen(argv[1], "r");18

i f (fptr == NULL)19

{20

printf("fopen fail.\n");21

// do not call fclose (fptr) here22

return EXIT_FAILURE;23

}24

printf("The name of the file is %s.\n", argv [1]);25

while (fgets(oneLine , MAX_LINE_LENGTH , fptr) != NULL)26

{27

numLine ++;28

}29

fclose(fptr);30

printf("The file has %d lines.\n", numLine);31

return EXIT_SUCCESS;32

}33

152 Intermediate C Programming

When the program cannot read from the file any more, fgets returns NULL. This means
that the end of the file has been reached. The C library has a function called getline and
it can be used to a line of arbitrary size.

Chapter 11

Programming Problems Using File

11.1 Sorting a File of Integers . 153
11.2 Counting the Occurrences of Characters . 155
11.3 Counting the Occurrences of a Word . 158
11.4 How to Comment Code . 160

11.1 Sorting a File of Integers

This program reads integers from a file, sorts them, and stores the sorted integers into
another file. We have already learned how to read integers from a file in Section 10.2.2.
Chapter 9 explains how to sort arrays. Here we put these two things together. This is the
first few steps of the program:

1. Check whether there are command-line arguments for the input and the output file
names.

2. Open the input file.
3. Read integers from the file and count the number of integers in the file.
4. Allocate memory to store the integers.
As illustrated in Fig. 10.1, a file is a stream. Every time something is read from the file,

the stream moves forward. After counting the number of integers, the stream has reached
its end. To fill the array, it is necessary to read the file from the beginning again. We can
do this in several ways. One way is to close the file and open it again. The preferred way is
to use fseek. It goes to a particular position in a file. This is how to go to the beginning of
a file: fseek(fptr, 0, SEEK SET).

Some people believe that calling rewind is the same as fseek(fptr, 0, SEEK SET).
This is not true. The returned value of fseek reports whether it succeeds or not, but
rewind does not report either success or failure.

The remaining steps are:
5. Use fseek to go to the beginning of the file.
6. Read the file again and fill the array.
7. Sort the array.
8. Close the input file.
9. Open the output file.

10. Write the sorted array to the output file.
11. Close the output file.
12. Free the memory for the array.

The order of some of these steps may be changed. For example, the program may free the
array memory before or after closing the output file (steps 11 and 12). The orders of steps
8 and 9 can also be exchanged. However, the order of some steps cannot be changed. For
example, step 9 (opening the output file) must precede step 10 (writing to the output file).
This can only be determined by thinking logically about the code. When writing complex
programs, it is important to write down the steps before writing the code. This saves a lot

153

154 Intermediate C Programming

of debugging time, and often potential problems can be considered before typing a single
line of code.

Below is a sample solution for this program. If we compare the program and the steps
listed above, we will find a close correspondence between them. This program uses the
built-in qsort function to sort integers.

// sortint.c1

#include <stdio.h>2

#include <stdlib.h>3

int comparefunc(const void * arg1 , const void * arg2)4

{5

const int * ptr1 = (const int *) arg1; // cast type6

const int * ptr2 = (const int *) arg2;7

const int val1 = * ptr1; // get the value from the address8

const int val2 = * ptr2;9

i f (val1 < val2) // compare the value10

{ return -1; }11

i f (val1 == val2)12

{ return 0; }13

return 1;14

}15

int main(int argc , char * argv [])16

{17

// need two file names: input and output18

i f (argc < 3)19

{20

return EXIT_FAILURE;21

}22

// open the input file23

FILE * infptr;24

infptr = fopen(argv[1], "r");25

i f (infptr == NULL)26

{27

return EXIT_FAILURE;28

}29

// count the number of integers in the file30

int count = 0;31

int val;32

while (fscanf(infptr , "%d", & val) == 1)33

{34

count ++;35

}36

// allocate memory for the array37

int * arr;38

arr = malloc(s i z eo f (int) * count);39

i f (arr == NULL)40

{41

fclose (infptr);42

return EXIT_FAILURE;43

}44

// go to the beginning of the file45

Programming Problems Using File 155

fseek(infptr , 0, SEEK_SET);46

// read the file again and fill the array47

int ind = 0; // array index48

while (fscanf(infptr , "%d", & val) == 1)49

{50

arr[ind] = val;51

ind ++;52

}53

// sort the array54

qsort (& arr[0], count , s i z eo f (int), comparefunc);55

// close the input file56

fclose (infptr);57

// open the output file58

FILE * outfptr;59

outfptr = fopen(argv[2], "w");60

i f (outfptr == NULL)61

{62

free (arr); // do not forget to release memory63

return EXIT_FAILURE;64

}65

// write the sorted array to the output file66

for (ind = 0; ind < count; ind ++)67

{68

fprintf(outfptr , "%d\n", arr[ind]);69

}70

// close outupt file71

fclose (outfptr);72

// release the array’s memory73

free (arr);74

return EXIT_SUCCESS;75

}76

11.2 Counting the Occurrences of Characters

The program reads characters from a file and counts their occurrences. The program
does not distinguish between uppercase characters and lowercase characters. Only the 26
Latin letters used in English are counted. If a character is not a Latin letter, the character
is ignored. The program then saves the occurrences into an output file.

The program has the following steps:
1. Check whether there are command-line arguments for the input and the output files.
2. Create an array of 26 integers. A fixed size array is preferred because the array’s size

is known in advance. This means that the array can be placed on the stack, and we
do not need to call malloc and free.

3. Open the input file.
4. Read the characters from the file. If the character is a Latin letter, increment the

corresponding array element.
5. Close the input file.

156 Intermediate C Programming

6. Open the output file.
7. Write the array’s elements to the output file.
8. Close the output file.
These steps are similar to the steps for the previous program, except the parts for

counting the characters. Below is a sample implementation of the above steps:

// countchar.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <ctype.h>4

#define NUM_CHAR 265

int main(int argc , char * argv [])6

{7

i f (argc < 3) // need input and output8

{9

return EXIT_FAILURE;10

}11

// create an array of 26 integers12

char charcount[NUM_CHAR] = {0}; // initialize to zeros13

// without initialization , the elements are garbage14

// open the input file15

FILE * infptr;16

infptr = fopen(argv[1], "r");17

i f (infptr == NULL)18

{19

return EXIT_FAILURE;20

}21

// count the occurrences of the characters22

int onechar;23

do24

{25

onechar = fgetc(infptr);26

i f (isupper(onechar))27

{28

charcount[onechar - ’A’] ++;29

}30

i f (islower(onechar))31

{32

charcount[onechar - ’a’] ++;33

}34

} while (onechar != EOF);35

// close the input file36

fclose (infptr);37

// open the output file38

FILE * outfptr;39

outfptr = fopen(argv[2], "w");40

i f (outfptr == NULL)41

{42

return EXIT_FAILURE;43

}44

// write the array ’s elements to the file45

Programming Problems Using File 157

int ind;46

for (ind = 0; ind < NUM_CHAR; ind ++)47

{48

fprintf(outfptr , "%c: %d\n", ind + ’A’,49

charcount[ind]);50

}51

// close outupt file52

fclose (outfptr);53

return EXIT_SUCCESS;54

}55

The main difference between this program and the previous program is in lines 24 to 35.
Line 27 uses the function isupper to determine whether the character is an uppercase
letter. This function is declared in ctype.h so the program needs to include this header
file. Calling isupper is equivalent to checking whether onechar is between ’A’ and ’Z’. The
ASCII value for ’A’ is 65 and the ASCII value for ’Z’ is 90. However, you should not check
whether onechar is between 65 and 90. There are a few reasons for this suggestion. First,
if you accidentally type 89 instead of 90, it is not easy to detect the mistake. It is difficult
remembering that ’Z’ is 90, not 89. By contrast, if you type ’Y’ instead ’Z’, it is easier to
detect the mistake. This brings us to the main reason for preferring ’A’ and ’Z’ to 64 and 90:
It is clear and easy to read. Clarity is one of the most important qualities of well-written
code. Did you notice that I incorrectly wrote 64, not 65? If you missed that mistake, it is
likely that you would miss similar mistakes in your programs.

How about converting uppercase letters to lowercase? Many students write

i f ((onechar >= 65) && (onechar <= 90))1

{2

onechar += 32;3

}4

This is bad. Why? It is difficult to understand the meaning of 65, 90, and 32. What
happens if we accidentally type 31 instead of 32? How much time does it take to find such
a mistake? It will take longer than you think. It is much better to write:

i f ((onechar >= ’A’) && (onechar <= ’Z’))1

{2

onechar = (onechar - ’A’) + ’a’;3

}4

Do not overlook the importance of these details. I have seen many students making
“small” mistakes like these. They are overly confident that they do not make mistakes.
When you write a complex program, the problems from these details can easily take hours
to detect and correct. Good programmers know this well, and dramatically improve their
efficiency by making things as simple and as clear as possible. It allows programmers to
write sophisticated computer programs more easily.

Lines 29 and 33 use the values in the ASCII table to calculate the corresponding index
for the array charcount. If the character is ’A’, then onechar - ’A’ is 0. If the character
is ’B’, then onechar - ’A’ is 1. If the character is ’c’, onechar - ’a’ is 2. Some students
write something like:

i f (onechar == ’A’)1

charcount [0] ++;2

i f (onechar == ’B’)3

charcount [1] ++;4

158 Intermediate C Programming

i f (onechar == ’C’)5

charcount [2] ++;6

i f (onechar == ’D’)7

charcount [2] ++;8

i f (onechar == ’E’)9

charcount [3] ++;10

Fifty-two conditions are needed. The problem should be obvious: It is easy to make mistakes.
If fact, there are mistakes in the code above. Can you detect them easily? There is a general
principle in writing good programs: Do not copy-paste code. Write DRY code. DRY stands
for “Don’t Repeat Yourself”. The opposite of DRY code is WET code, which stands for
“We Enjoy Typing”.

There are many reasons to follow the DRY principle. If you copy-paste code, then you
increase the chances of mistakes. This is especially true when the code is modified after it is
written. Once we have two (or more) pieces of WET code, testing, debugging and improving
the code becomes more difficult. We need to remember to change all places that the code is
repeated. If we forget to change some places, then the program will surprise you: In some
situations, the program is correct, but in others it fails.

There are many simple and clear solutions that avoid WET code. For example, if the
two (or more) pieces of code are identical, then create a function and call it twice. If they
are mostly similar but with a few differences, then the function’s arguments can handle the
differences. Spending some time fixing WET code usually helps tremendously in developing
good test cases, since the programmer must think about and ultimately understand the
code. That also helps with debugging, since you will be more familiar with how the program
should behave as you step through it line by line.

Line 49 is the reverse way of using the ASCII values. If the index is 0, it corresponds to
’A’ so the value of ’A’ is added. The output of this program will look something like:

A: 39

B: 1

C: 41

D: 16

E: 69

F: 38

11.3 Counting the Occurrences of a Word

This program takes three arguments:
1. argv[1]: The name of the input file.
2. argv[2]: The name of the output file.
3. argv[3]: A word to be searched for.
This program detects and counts the occurrences of the word in an input file. If a line

in the input file includes the word, the program writes that line to the output file. After
checking all lines in the input file, the program writes the total count to the output file. We
must first think about how words are counted. If the search word is “eye” and a line in the
input file contains “eyeye”, do you count 1 or 2? Both definitions are acceptable in different
circumstances and we need to decide which definition to use. We will explain how to handle
the differences. For simplicity, each line in the input file contains at most 80 characters (and

Programming Problems Using File 159

thus needs memory for 81 characters). The program does not count a word that spans two
or more lines. The program uses strstr to search a word within a line.

// countstr.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#define LINE_LENGTH 815

int main(int argc , char * argv [])6

{7

i f (argc < 4) // input word output8

{9

return EXIT_FAILURE;10

}11

// open the input file12

FILE * infptr;13

infptr = fopen(argv[1], "r");14

i f (infptr == NULL)15

{16

return EXIT_FAILURE;17

}18

// open the output file19

FILE * outfptr;20

outfptr = fopen(argv[2], "w");21

i f (outfptr == NULL)22

{23

fclose (infptr);24

return EXIT_FAILURE;25

}26

int count = 0;27

char oneline[LINE_LENGTH];28

while (fgets(oneline , LINE_LENGTH , infptr) != NULL)29

{30

i f (strstr(oneline , argv [3]) != NULL)31

{32

fprintf(outfptr , "%s", oneline);33

}34

char * chptr = oneline;35

while (chptr != NULL)36

{37

chptr = strstr(chptr , argv [3]);38

i f (chptr != NULL)39

{40

count ++;41

// if "eyeye" counts as two "eye"42

chptr ++;43

// if "eyeye" counts as one "eye"44

// chptr += strlen(argv [3]);45

}46

}47

}48

160 Intermediate C Programming

fprintf(outfptr , "%d\n", count);49

// close the input file50

fclose (infptr);51

// close outupt file52

fclose (outfptr);53

return EXIT_SUCCESS;54

}55

Lines 41 and 45 implement the two definitions. Line 41 increments the address by only
one and searches again. Line 45 increments the address by length of the string. So “eyeye”
contains only one “eye”, because after finding the first “eye”, the program continues its
search from “ye”.

11.4 How to Comment Code

Almost every programming class requires that students comment their code. Addition-
ally, almost every programming book tells readers to comment their code. However, very
few classes or books say how to comment code. Writing comments is like writing an article
and it is difficult to grade comments. Comments are about communicating with the readers
of the code: Style and clarity are important. If comments do not explain code, then they are
not useful. It is not yet possible to check comments’ usefulness by using computer programs.
Grading comments by human eyes (usually by teaching assistants) is labor-intense. As a
result, some professors do not consider comments in grading and most students do not take
comments seriously. Sometimes students even write comments like “because the professors
tell us so.” Some students ask me, “Do I need to write comments for you?” My answer is,
“You need to write comments for yourself.” If your program is longer than, say, 20 lines,
you need to write comments before writing code.

This book frequently lists the steps before writing a program. These steps should be
written in the comments of the code. Remember that programs are written to solve prob-
lems. The programs implement solutions. The solution must be known before the first line
of code is typed. Writing a program without a solution first is like laying bricks for a house
before knowing how many rooms the house will have. Almost everyone agrees that a house
needs to be designed before it is built. Write code after you know the solution. It is good
practice to think about the solution, write down the steps, explain your thinking process in
comments.

In addition to explaining the steps, comments are needed to explain specifics of how
functions work: what is required of the arguments, and what the return result means.
Manual pages are good examples of this. Consider the manual page for fgets:

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from

stream and stores them into the buffer pointed to by s. Reading

stops after an EOF or a newline. If a newline is read, it is stored

into the buffer. A terminating null byte (’\0’) is stored after the

last character in the buffer.

fgets() return s on success, and NULL on error or when end of

file occurs while no characters have been read.

Programming Problems Using File 161

This explains the arguments, the behavior of the function, and the return value. Notice
how clear and dense the text is. No word is wasted.

A common mistake is to repeat information that is obvious from the syntax. The fol-
lowing comment is unnecessary:

/* This function has two arguments. Both are integers.1

The function returns an integer. */2

int func(int a, int b);3

Compare with the informative comment:

/* The function returns1

1 if a > b2

0 if a == b3

-1 if a < b4

*/5

int func(int a, int b);6

Comments should provide some information that is unavailable from the syntax. Com-
ments are important when explaining complex concepts. The example below shows a call
stack:

/*

| Frame | Symbol | Address | Value |

| | z | 103 | 5 |

| f2 | y | 102 | 8 |

| | x | 101 | -7 |

*/

We can also use comments to show the flow of a function:

/*

open input file -> count the number of lines -|

|

--|

|

---> allocate memory -> return to the beginning of the file

*/

The following is also good for those who do not like drawing:

/*

1. open input file

2. count the number of lines

3. allocate memory

4. return to the beginning of the file

*/

It should be apparent that comments can express important concepts. It takes practice
to write comments well. It is often helpful to read others’ code to see what comments are

162 Intermediate C Programming

useful, and what are merely distractions. This is important for your own code. If you read
a program written six months ago, can you understand it easily? If the meaning is not
apparent, then the commenting can be improved.

With practice, comments become a good way to further understand your code by testing
your ability to explain it. This, in turn, helps catch subtle problems, and also helps you
generate good test cases. By guiding the eye of the reader through the code, good comments
augment carefully chosen variable names, and clear syntax. Doing this shows that you have
thought deeply about the program.

Part II

Recursion

163

This page intentionally left blankThis page intentionally left blank

Chapter 12

Recursion

12.1 Selecting Balls with Restrictions . 166
12.1.1 Balls of Two Colors . 166
12.1.2 Balls of Three Colors . 167
12.1.3 A Further Restriction . 168

12.2 One-Way Streets . 170
12.3 The Tower of Hanoi . 171
12.4 Calculating Integer Partitions . 174

12.4.1 Count the Number of “1”s . 175
12.4.2 Odd Numbers Only . 177
12.4.3 Increasing Values . 178
12.4.4 Alternating Odd and Even Numbers . 179
12.4.5 Generalizing the Integer Partition Problem . 180
12.4.6 How Not to Solve the Integer Partition Problem . 181

Recursion is an everyday phenomenon that is natural to the human mind. Sometimes re-
cursive computer programs can be challenging to reason about; however, recursion itself is
readily understandable. For example, every person has parents, who have parents, who have
parents, etc. That is an example of recursion. For another example, take two mirrors and
make them face each other. A characteristic pattern will appear with images within images
within images, etc. We also see recursion in cell-growth, and this manifests in the shapes
of living things. For example, a tree’s trunk is divided into main branches. Each branch in
turn is further divided into smaller branches. Smaller branches are divided into twigs, and
eventually we have leaves. This is the third example of recursion. In this case the recursive
branching of the trunk into twigs is bounded by the leaves. Recursion is everywhere around
us, and is also part of us. It is part of language, the way we think, and how our bodies grow.
Recursion is one of nature’s ways for solving complex problems.

There are three essential properties of recursion:
1. Recurring patterns. The examples above describe some recurring patterns: a person,

the person’s parents, their parents ...
2. Changes. Recursion does not merely mean repeating. A person is younger than the

parents and they are younger than their parents. In the two mirrors, images become
smaller. For a tree, branches become thinner. Each step of a recursive pattern has a
characteristic change.

3. A terminating condition (or conditions). The recurring pattern eventually stops. A
family tree stops at the youngest member that has no child. The images in the fac-
ing mirrors will become smaller and eventually invisible. When a branch eventually
becomes leaves, the pattern stops.

Recursion can be a strategy for solving problems using a concept called divide and
conquer: Divide a complex problem into smaller problems and solve (conquer) the smaller
problems. This works when the smaller problems are related to the larger problem. Recursion
uses the following steps:

1. Identify the argument (or arguments) of a problem.

165

166 Intermediate C Programming

2. Express the solution based on the arguments.
3. Determine the simple case(s) when the solutions are “obvious”.
4. Derive the relationships between the complex case(s) and the simpler case(s).
Recursion is a topic that often separates beginning programmers from advanced pro-

grammers. Many introductory books treat recursion superficially, giving one or two exam-
ples without really explaining why recursion can be useful and how to use recursion to solve
problems. On the other hand, the books written for advanced programmers assume readers
are already comfortable solving problems with recursion. Thus, neither type of book ex-
plains recursion in detail. Because of this gap, many people find recursion mysterious. This
book gives many examples that explain how to use recursion to solve problems.

12.1 Selecting Balls with Restrictions

12.1.1 Balls of Two Colors

There are unlimited red (R) and blue (B) balls in a bag. A game selects n balls under
the restriction that red balls cannot be selected one after another. The order matters: The
selections RB and BR are considered different from each other. The question is how many
different ways can the balls be selected? This problem can be solved recursively by applying
the four steps above:

1. Identify the argument (or arguments) of the problem.
For this problem, the number of balls, n, is the argument.

2. Express the solution based on the arguments.
Let f(n) be the answer: the number of ways to select the n balls under the restriction
(two adjacent balls cannot both be red).

3. Determine the simple case(s) when the solutions are “obvious”.
If only one ball is selected, then there are two possibilities: R or B . Thus, f(1) is 2. If
only two balls are selected, there are three possibilities: RB, BR, and BB. Therefore,
f(2) is 3.

4. Derive the relationships between the complex case(s) and the simpler case(s).
If there are n balls (n > 2), the first ball can be R or B and vice versa. Therefore, there
are exactly two choices for the first ball. Fig. 12.1 shows the two different scenarios in
the selection of the second ball.
(a) If the first ball is B, then the remaining n − 1 balls must follow the same rule:

no red balls are adjacent. There are f(n− 1) possibilities.
(b) If the first ball is R, then the second ball must be B. A B ball resets the pos-

sibilities since the third ball can be R or B, without any additional restriction.
Therefore the remaining n − 2 balls must follow the same rule and there are
f(n− 2) possibilities.

Based on this analysis, f(n) is the sum f(n− 1) + f(n− 2).

f(n) =

2 when n is 1

3 when n is 2

f(n− 1) + f(n− 2) when n > 2

(12.1)

Recursion 167

FIGURE 12.1: To decide f(n), consider the possibilities for the first ball. If the first ball
is B, the remaining n − 1 balls have f(n − 1) possibilities. If the first ball is R, then the
second ball must be B and the remaining n− 2 balls have f(n− 2) possibilities.

12.1.2 Balls of Three Colors

The question can be extended in many ways. The first extension considers balls of three
colors. We still assume that there are unlimited red (R), green (G), and blue (B) balls. We
select balls under the restriction that two adjacent balls cannot be both red. Note that the
orders matter: RB and BR are different selections. How many possible sequences can be
selected for n balls?

When n is one, there are three possibilities:
1. R
2. G
3. B
When n is two, there are eight possibilities. Please notice that R R is an invalid option.

1. R G
2. R B
3. G R
4. G G
5. G B
6. B R
7. B G
8. B B
What is the number of possibilities for n balls when n > 2? To solve this problem, let

f(n) be the answer. We already know that f(1) = 3 and f(2) = 8.
When n > 2, consider the possibilities for the very first ball. Fig. 12.2 shows three

scenarios:
1. If the first ball is G, then the second ball can be any of the three colors. There is

no further restriction for the remaining n− 1 balls. Thus, there are f(n− 1) possible
sequences for the remaining n− 1 balls.

2. Likewise, if the first ball is B, then the second ball can be any of the three colors.
There is no further restriction for the remaining n−1 balls. There are f(n−1) possible
sequences for the remaining n− 1 balls.

168 Intermediate C Programming

3. If the first ball is R, then there are two scenarios:
(a) If the second ball is G, then the third ball can be any of the three colors. There

is no further restriction for the remaining n − 2 balls. Thus, there are f(n − 2)
possible sequences for the remaining n− 2 balls.

(b) If the second ball is B, then the third ball can be any of the three colors. There
is no further restriction for the remaining n − 2 balls. Thus, there are f(n − 2)
options for the remaining n− 2 balls.

(c) Note that the second ball cannot be R, so this possibility is not considered.

FIGURE 12.2: To decide f(n), consider the possibilities for the first ball. If the first ball
is G or B, the remaining n − 1 balls have f(n − 1) possibilities. If the first ball is R, the
second ball must be G or B and the remaining n− 2 balls have f(n− 2) possibilities.

Thus, the relationships are:

f(n) =

3 if n is 1

8 if n is 2

f(n− 1) + f(n− 1) + f(n− 2) + f(n− 2) = 2f(n− 1) + 2f(n− 2) if n > 2

(12.2)

12.1.3 A Further Restriction

This question can be extended further with another restriction. Now two adjacent balls
cannot both be red or green. Two adjacent balls can both be blue. How many possible
sequences can be selected for n balls? When n is one, there still are three possibilities:

1. R
2. G
3. B

Recursion 169

When n is two, there are seven possibilities. Please notice that G G is an invalid option.
1. R G
2. R B
3. G R
4. G B
5. B R
6. B G
7. B B

We use a different approach to solve this problem, by using some additional functions:
• r(n) is the number of possible sequences when selecting n balls and the first ball is R.
• g(n) is the number of possible sequences when selecting n balls and the first ball is G.
• b(n) is the number of possible sequences when selecting n balls and the first ball is B.
• f(n) is the number of possible sequences when selecting n balls and the first ball can

be any of the three colors. Thus, f(n) = r(n) + g(n) + b(n).
The following table shows the values of these functions for n equal to 1 or 2:

n 1 2
r(n) 1 2
g(n) 1 2
b(n) 1 3
f(n) 3 7

How is r(n) calculated when n is greater than 2? By definition, r(n) means the number
of possible sequences of n balls and the first one is R. For the remaining n−1 balls, the first
ball (the second among the n balls) can be either G or B. If the first (the second among the
n balls) ball is G, there are g(n− 1) possibilities. Similarly, when the first ball (the second
among the n balls) is B, there are b(n−1) options. Thus, r(n) = g(n−1)+b(n−1). Because
the same restrictions apply to both red and green balls, we can use the same reasoning to
write g(n) = r(n− 1) + b(n− 1).

How many possibilities are there when selecting n balls and the first ball is B? When
the first is blue then there is no restriction on the second ball in the sequence. The second
ball can be red, green, or blue; thus, this is true b(n) = g(n− 1) + b(n− 1) + r(n− 1). This
is also f(n− 1) because it means selecting n− 1 balls and the first ball can be G, B, or R.
There are f(n− 1) possible sequences of length n− 1 balls so b(n) = f(n− 1).

The complete solution is shown below:

r(n) = g(n− 1) + b(n− 1)
g(n) = r(n− 1) + b(n− 1)
b(n) = f(n− 1)
f(n) = r(n) + g(n) + b(n)

(12.3)

The table below shows the values when n is between 1 and 6:

n 1 2 3 4 5 6
r(n) 1 2 5 12 29 70
g(n) 1 2 5 12 29 70
b(n) 1 3 7 17 41 99
f(n) 3 7 17 41 99 239

170 Intermediate C Programming

12.2 One-Way Streets

A B

C

D

E

F

FIGURE 12.3: A city’s streets form a grid, and are either east–west bound or north–south
bound. A car can move only east or north.

A city has severe traffic congestions during rush hours so the city government considers
adopting a rule: During rush hours, cars can move only east or north. All streets run either
east–west or north–south, forming a grid, as shown in Fig. 12.3.

Assume we had the location of a car’s origin and destination. How many ways can the
destination be reached by driving? This example may seem artificial but it is actually a
reasonable simplification of the one-way streets in the downtown districts of many cities.
These cities generally have one-way streets that run in opposite directions, so that cars can
move west and south as well. Nonetheless, the simplification is useful for analyzing traffic
patterns.

Fig. 12.3 marks three pairs of origins and destinations: A → B, C → D, and E → F.
How many turning options does a driver have going from one origin to their corresponding
destination? For the first two pairs A → B and C → D, the driver has only one option: not
to turn at all. This is shown in Fig. 12.4 (a) and (b). There are more options for E → F.
At E, the driver can go eastbound first or northbound first, as indicated by the two arrows
in Fig. 12.4 (c). The question is the number of different paths a driver can make between
the origin and the destination.

A B

C

D

E

F

(a)

A B

C

D

E

F

(b)

A B

C

D

E

F

(c)

FIGURE 12.4: (a) A driver cannot turn anywhere when traversing from A to B. (b)
Likewise, a driver cannot turn anywhere when traversing from C to D. (c) There are some
turning options when traversing from E to F. At E, the driver can go northbound first or
eastbound first, as indicated by the two arrows.

This question can be answered using the four steps for solving the recursive problem:
1. Identify the argument (or arguments) of a problem. Suppose E is at the intersection

of (x1, y1) and F is at the intersection of (x2, y2). The distance between them can be
expressed as (∆x,∆y) = (x2− x1, y2− y1).

Recursion 171

2. Express the solution based on the arguments. Let f(∆x,∆y) express the number of
unique paths.

3. Determine the simple case(s) when the solutions are “obvious”. If ∆x < 0, the desti-
nation is at the west side of the origin and there is no solution. Similarly, there is no
solution if ∆y < 0. If ∆x > 0 and ∆y = 0 (the case A → B), then there is precisely
one solution. Likewise, if ∆x = 0 and ∆y > 0 (the case C→ D), there is also precisely
one solution. These are the simple cases whose answers can be found easily. A special
case occurs when ∆x = ∆y = 0. This means that the destination is the same as the
origin. It can be defined as no solution or one solution depending on what the reader
prefers. Our solution considers that there is one solution for ∆x = ∆y = 0.

f(∆x,∆y) =

0 if ∆x < 0 or ∆y < 0

1 if ∆x = 0 and ∆y ≥ 0

1 if ∆x ≥ 0 and ∆y = 0.

(12.4)

4. Derive the relationships between the complex case(s) and the simpler case(s). When
∆x > 0 and ∆y > 0 (the case E → F), then the driver has two options at the origin
(i.e., E): Either the driver goes north first or east first. If the driver heads north, then
the new origin is at (x1, y1 + 1). There are f(∆x,∆y − 1) possible paths from this
point. If the driver goes east first, then the new origin is at (x1 + 1, y1). Similarly,
there are f(∆x−1,∆y) possible paths from this point. These are the only two possible
options at position E and they are exclusive. Therefore, when ∆x > 0 and ∆y > 0,
the solution can expressed as f(∆x,∆y) = f(∆x,∆y − 1) + f(∆x− 1,∆y).

f(∆x,∆y) =

0 if ∆x < 0 or ∆y < 0

1 if ∆x = 0 and ∆y ≥ 0

1 if ∆x ≥ 0 and ∆y = 0

f(∆x,∆y − 1) + f(∆x− 1,∆y) if ∆x > 0 and ∆y > 0

(12.5)

12.3 The Tower of Hanoi

A B C

(a)

⇒

A B C

(b)

FIGURE 12.5: The Tower of Hanoi. (a) Some disks are on pole A and the goal is to move
all the disks to pole B, as shown in (b). A larger disk can never be placed on top of a smaller
disk. A third pole, C, can be used when necessary.

Some disks of different sizes are stacked on a single pole. The disks are arranged so that
smaller disks are above larger disks. The problem is to move the disks from one pole to

172 Intermediate C Programming

A B C

(a)

⇒

A B C

(b)

FIGURE 12.6: Moving one disk from A to B requires only one step.

A B C

⇒

A B C

⇓
A B C

⇐

A B C

FIGURE 12.7: Moving two disks from A to B requires three steps.

another pole. Only one disk can be moved each time. A larger disk cannot be placed above
a smaller disk. The third pole can be used for “temporary storage”. Fig. 12.5 illustrates the
problem. If there are n disks, how many steps are needed to move them to the second pole?

First consider moving only one disk from A to B. This is the simplest case and that disk
can be moved directly from A to B as shown in Fig. 12.6.

Moving two disks requires more work. It is illegal to move the smaller disk to B and then
move the larger disk to B. Doing so would place the larger disk above the smaller disk and
violates the rules. Instead, it is necessary to move the smaller disk “somewhere else”, i.e.,
C, before moving the larger disk to B. Then, move the larger disk from A to B and move
the smaller disk from C to B. The steps are illustrated in Fig. 12.7. As illustrated, when
there are two disks, the problem can be solved in three steps. Can you think of a solution
that requires fewer steps for two disks?

Fig. 12.8 illustrates how to move three disks. The first three steps and the last three
steps are somewhat similar. The first three steps move the top two disks from A to C. The
last three steps move the top two disks from C to B. Between these steps is the fourth step,
which is to move the largest disk from A to B.

What is the general strategy for moving n disks? If there is only one disk (i.e., n is one),
the problem can be solved easily. Otherwise, the solution is divided into three parts:

1. Move the first n− 1 disks from A to C.
2. Move the largest disk from A to B.
3. Move the first n− 1 disks from C to B.
Now we put the steps together to solve the problem using recursion. The four-step

approach for solving this problem is listed below:
1. Identify the argument (or arguments) of a problem.

The number n is naturally the argument for the problem.

Recursion 173

A B C

⇒

A B C

⇓
A B C

⇐

A B C

⇓
A B C

⇒

A B C

⇓
A B C

⇐

A B C

FIGURE 12.8: Moving three disks from A to B requires seven steps.

2. Express the solution based on the arguments.
Let f(n) be the answer: how many steps are needed to move n disks from A to B.

3. Determine the simple case(s) when the solutions are “obvious”.
If n is one, only one step is sufficient; thus, f(1) is 1.

4. Derive the relationships between the complex case(s) and the simpler case(s).
When n is greater than one, the problem can be divided into three parts:
(a) Move n− 1 disks to pole C, which requires f(n− 1) steps.
(b) Move the largest disk to pole B, which requires 1 step.
(c) Move n− 1 disks from pole C to pole B, which requires f(n− 1) steps.

The following formula expresses the steps:

f(n) =

{
1 if n is 1

f(n− 1) + 1 + f(n− 1) = 2f(n− 1) + 1 if n ≥ 2
(12.6)

This is a recursive form, meaning that the formula is defined in terms of itself. This
works because the formula always references “smaller” versions of itself, until it gets to the
trivial case (n is 1). For example, notice how f(n) appears on one side of the = sign, and
f(n − 1) appears on the other side. Thus, when we expand f(n), we will need to expand
f(n− 1) and then f(n− 2), etc., until we reach f(1), which equals 1.

174 Intermediate C Programming

In this case it possible to find a closed form formula: f(n) is expressed without f(n− 1)
appearing on the right side of the = sign.

f(n) = 2f(n− 1) + 1
= 4f(n− 2) + 2 + 1
= 8f(n− 3) + 4 + 2 + 1
= 16f(n− 4) + 8 + 4 + 2 + 1
= 2kf(n− k) + 2k−1 + 2k−2 + ... + 4 + 2 + 1
= 2n−1f(1) + 2n−2 + 2n−3 + ... + 4 + 2 + 1, when k = n− 1
= 2n−1 + 2n−2 + 2n−3 + ... + 4 + 2 + 1, because f(1) = 1
= 2n − 1

(12.7)

It is not always possible, or easy, to find closed form formulas for recursive equations.
Usually this requires a working knowledge of various series. Proving the answer is correct
requires mathematical induction.

12.4 Calculating Integer Partitions

A positive integer can be expressed as the sum of a sequence of positive integers. An
integer partition creates such a sequence of integers. For example, 5 can be broken into
the sum of 1 + 2 + 2 or 2 + 3. These two partitions use different numbers, and thus
are considered unique integer partitions. The order of the number in the partition is also
important. Thus, 1 + 2 + 2 and 2 + 1 + 2 are considered different integer partitions because
1 appears in different positions. Below are some example integer partitions:

1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1

= 2 = 1 + 2 = 1 + 1 + 2

= 2 + 1 = 1 + 2 + 1

= 3 = 1 + 3

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4

This question wants to answer the number of different partitions for a positive integer
n. This problem can be solved by using the four-step approach solving recursive problems:

1. Identify the argument (or arguments) of a problem.
The number n is naturally the argument for the problem.

2. Express the solution based on the arguments.
Let f(n) be the number of different partitions for integer n.

3. Determine the simple case(s) when the solutions are “obvious”.
When n is 1, there is only one way to partition the number: itself. When n is 2, there
are two ways: 1 + 1 and 2. Thus, f(1) = 1 and f(2) = 2.

4. Derive the relationships between the complex case(s) and the simpler case(s).
When n is larger than 2, the solution selects the first number. It must be an integer
between 1 and n inclusively. After selecting the first number, we have to partition
the remaining portion of the number. Thus for each of the n possibilities for the first

Recursion 175

number, we need to consider the number of possibilities for the remaining partition.
The relationship can be expressed in this table:

Total First Number Remaining Value to Partition
n 1 n− 1
n 2 n− 2
n 3 n− 3

...
n n− 2 2
n n− 1 1
n n 0

These are all the possible cases and they are exclusive. If the first number is 1, then
the remaining value to be partitioned is n − 1. How many ways can n − 1 be partitioned?
By definition, it is f(n − 1). Continuing with this logic, if the first number is 2, then the
remaining value is n − 2, and by definition there are f(n − 2) ways to partition it. Using
recursion, we can assume that we have the answers to smaller versions of the problems.
This works because the smaller versions are expressed in terms of yet smaller versions, and
eventually we get to the trivial cases, i.e., f(1) = 1, and f(2) = 2.

The value of f(n) is therefore the sum of all the different cases when the first number is
1, 2, 3, . . . , n− 1, or n. Now, we can express f(n) as

f(n) =

1 if n is 1

f(n− 1) + f(n− 2) + . . . f(1) + 1 = 1 +
n−1∑
i=1

f(i) if n > 1
(12.8)

There is also a convenient closed form solution to f(n):

f(n) = f(n− 1) +f(n− 2) + f(n− 3) + ... + 1
− f(n− 1) = +f(n− 2) + f(n− 3) + ... + 1

f(n)− f(n− 1) = f(n− 1)
f(n) = 2f(n− 1)
f(n) = 4f(n− 2)
f(n) = 8f(n− 3)
f(n) = 16f(n− 4)

...
f(n) = 2n−1f(1)
f(n) = 2n−1

(12.9)

Therefore there are 2n−1 ways to partition the integer n.

12.4.1 Count the Number of “1”s

The partition problem has many variations. In this variation we count how many “1”s
are used for partitioning n. Suppose g(n) is the answer. First observe that g(1) = 1 and
g(2) = 2. The more complicated cases can be related to the simpler cases with the following
logic. Observe that there are 2n−2 partitions of n that begin with the digit “1”. There may
be “1”s in the partitions of the remaining value, n − 1. Thus, when the first number is
“1”, we use 2n−2 + g(n− 1) “1”s. Notice again how we just assume we have the answer for

176 Intermediate C Programming

FIGURE 12.9: Count the occurrences of “1” when partitioning n.

smaller versions of the same function. We do not need to worry about the specific value of
g(n− 1), we just use it, confident that g(n− 1) will be expanded to g(n− 2), etc., until we
reach the trivial cases g(1) and g(2).

Continuing with this logic, when the first number is “2”, “1” is not used for the first
number but “1” may be used for partitioning the remaining value of n − 2. By definition,
“1” is used g(n− 2) times when partitioning n− 2.

Putting this all together, we calculate g(n) to be:

g(n) =

1 when n is 1

2n−2 + g(n− 1) + g(n− 2) + . . . g(1) = 2n−2 +
n−1∑
i=1

g(i) when n > 1

(12.10)
To obtain the closed form, first find the relationship between g(n) and g(n− 1):

g(n) = 2n−2 + g(n− 1) +g(n− 2) + g(n− 3) + ... + g(1)
− g(n− 1) = 2n−3 +g(n− 2) + g(n− 3) + ... + g(1)

g(n)− g(n− 1) = 2n−3 + g(n− 1)
g(n) = 2n−3 + 2g(n− 1)

(12.11)

This relationship can be expanded for g(n− 2), g(n− 3), ..., g(1).

g(n) = 2n−3 + 2g(n− 1)
g(n− 1) = 2n−4 + 2g(n− 2)
g(n− 2) = 2n−5 + 2g(n− 3)

...
g(n− k) = 2n−k−3 + 2g(n− k − 1)

...
g(3) = 20 + 2g(2) when k = n− 3

(12.12)

In (12.12), the coefficient for g(n−1) on the right side is two. In order to cancel g(n−1),
the coefficient on the left size has to increase accordingly as shown below:

Recursion 177

g(n) = 2n−3 + 2g(n− 1)
2g(n− 1) = 2n−3 + 4g(n− 2)
4g(n− 2) = 2n−3 + 8g(n− 3)

...
2kg(n− k) = 2n−3 + 2k+1g(n− k − 1)

...
+ 2n−3g(3) = 2n−3 + 2n−2g(2)

g(n) +
n−1∑
i=3

2n−ig(i) = (n− 2)2n−3 + 2n−2g(2) +
n−1∑
i=3

2n−ig(i)

g(n) = (n− 2)2n−3 + 2n−2g(2)
g(n) = (n− 2)2n−3 + 2n−1

g(n) = (n + 2)2n−3

(12.13)

This table shows that the value of g(n) for 1 ≤ n ≤ 10. If a formula does not match
these cases, the formula is definitely wrong. However, matching these cases does not mean
that the formula is correct. It is necessary to have a systematic way to find the formula. It
is generally a bad idea to find a formula to match these finite values.

n 1 2 3 4 5 6 7 8 9
g(n) 1 2 5 12 28 64 144 320 704

12.4.2 Odd Numbers Only

In this variation of the partition problem we want to find how many ways n can be
partitioned without using any even number. It may be helpful to review how Equation (12.8)
is derived. What does f(n − 1) mean in this equation? It means the number of partitions
using “1” as the first number. Similarly, what does f(n−2) mean in this equation? It means
the number of partitions using “2” as the first number. To restrict the partitions to odd
numbers only, all partitions using even numbers must be discarded. Thus, f(n−2), f(n−4),
f(n− 6), etc., must be excluded. Suppose h(n) is the number of partitions for n using odd
numbers only.

h(n) = h(n− 1) + h(n− 3) + h(n− 5)... when n > 1 (12.14)

The last few terms will be different depending on whether n itself is odd or even. If n is
odd, n − 1 is even so h(1) is excluded. Also n − 1, n − 3, ..., are all even numbers. The
complete equation is shown below:

h(n) =

{
1 when n is 1

h(n− 1) + h(n− 3) + h(n− 5)... + h(2) + 1 when n > 1 and n is odd

(12.15)
If n is even, n− 1 is odd so h(1) is included. Also n− 1, n− 3, ..., are all odd numbers.

Therefore the complete equation is shown below:

178 Intermediate C Programming

h(n) =

1 when n is 1

h(n− 1) + h(n− 3) + h(n− 5)... + h(2) + 1 when n > 1 and n is odd

h(n− 1) + h(n− 3) + h(n− 5)... + h(1) when n is even

(12.16)

12.4.3 Increasing Values

How many ways can the positive integer n be partitioned using increasing values or the
number n itself? Suppose n is partitioned into the sum of k numbers:

n = a1 + a2 + a3 + ... + ak (12.17)

The following conditions must be true:
• ai (1 ≤ i ≤ k) are positive integers
• ai < ai+1 (1 ≤ i < k)
Consider the first few cases of n:
• When n is 1, 1 is a valid partition.
• When n is 2, 2 is a valid partition but 1 + 1 is invalid.
• When n is 3, 1 + 2 and 3 are two valid partitions; 1 + 1 + 1, and 2 + 1 are invalid

partitions.
• When n is 4, 1 + 3 is a valid partition; 2 + 2 and 3 + 1 are invalid partitions.
• When n is 5, 1 + 4, 2 + 3 are valid partitions; 2 + 2 + 1, 3 + 2, 4 +1 are invalid

partitions.
To solve this problem, two arguments are needed for the equation. We define p(n,m)

to be the number of ways to partition n where m is the smallest number used. When
partitioning n, note the following:
• If 1 is used as the first number, then 2 is the smallest number that can be used when

partitioning n−1. There are p(n−1, 2) ways to partition n−1 using 2 as the smallest
number.
• If 2 is used as the first number, then 3 is the smallest number that can be used to

partition n− 2. There are p(n− 2, 3) ways to partition n− 2 using 3 as the smallest
number.
• If 3 is used as the first number, then 4 is the smallest number that can be used to

partition n− 3. There are p(n− 3, 4) ways to partition n− 3 using 4 as the smallest
number.

Based on this reasoning,

p(n, 1) = p(n− 1, 2) + p(n− 2, 3) + ... + p(n− k, k + 1) + ... + p(1, n) + 1

= 1 +
n−1∑
i=1

p(n− i, i + 1)
(12.18)

By inspection we can tell that p(n, n) = 1. This means that there is one and only one
way to partition n using n as the smallest number. Also, p(n,m) = 0 if n < m because it
is impossible to partition an integer using a larger integer. This problem is different from
the previous ones because the recursive equations require two arguments. The fundamental
recursive reasoning is the same.

Recursion 179

12.4.4 Alternating Odd and Even Numbers

In this variation of the problem we want to find partitions that alternate between odd
and even numbers. If an odd number is used, then the next must be an even number. If an
even number is used, then the next must be an odd number. If only one number is used
(i.e., the number to be partitioned), then this restriction does not apply and it is always a
valid partition. This restriction allows only the following partitions for 1 to 7:

1 = 1 2 = 2 3 = 1 + 2 4 = 1 + 2 + 1

= 2 + 1 = 4

= 3

5 = 1 + 4 6 = 1 + 2 + 1 + 2 7 = 1 + 2 + 1 + 2 + 1

= 2 + 1 + 2 = 1 + 2 + 3 = 1 + 6

= 2 + 3 = 1 + 4 + 1 = 2 + 1 + 4

= 3 + 2 = 2 + 1 + 2 + 1 = 2 + 3 + 2

= 4 + 1 = 3 + 2 + 1 = 2 + 5

= 5 = 6 = 3 + 4

= 4 + 1 + 2

= 4 + 3

= 5 + 2

= 6 + 1

= 7

The following table shows the solutions for n between 1 and 10.

n 1 2 3 4 5 6 7 8 9 10
number of partitions 1 1 3 2 6 6 11 16 22 37

This problem using alternating odd and even numbers can be solved by defining two
functions as follows:
• s(n) is the number of ways to partition n using an odd number as the first number.
• t(n) is the number of ways to partition n using an even number as the first number.

By observation we can create the following table:

n 1 2 3 4 5
s(n) 1 0 2 1 3
t(n) 0 1 1 1 3
sum 1 1 3 2 6

To calculate s(n), the first number can be 1, 3, 5, ... and the second number must be an
even number. For example, when 1 is used for the first number, then the remaining n − 1
must start with an even number. By definition, there are t(n − 1) ways to partition n − 1
starting with an even number. When 3 is used for the first number, then there are t(n− 3)
ways to partition n − 3 starting with an even number. Based on this reasoning, s(n) is
defined as:

s(n) = t(n− 1) + t(n− 3) + t(n− 5)... (12.19)

By definition, s(n) must not start with an even number and t(n− 2), t(n− 4), ... must not
be included.

It is necessary to distinguish whether n is odd or even while writing down the last few
terms in this equation. If n is an even number then:

180 Intermediate C Programming

• n − 3 is an odd number. This means that there are t(n − (n − 3)) = t(3) ways to
partition n with n− 3 as the first number. For example, if n = 10, there are t(3) ways
to partition 10 with 7 as the first number. Note that t(3) = 1, because the only valid
partition of 3 that starts with an even number is: 3 = 2 + 1.
• n − 2 is an even number. We skip this case because s(n) is only concerned with the

number of ways to partition n using an odd number as the first number.
• n− 1 is an odd number, so t(n− (n− 1)) = t(1) is included in the calculation of s(n).

Note, however, that t(1) = 0.
• n is an even number. We skip this case because s(n) only concerns itself with partitions

that begin with odd numbers.
Hence, when n is an even number:

s(n) = t(n− 1) + t(n− 3) + t(n− 5)... + t(3) + t(1) (12.20)

Following this logic when n is an odd number:
• n−3 is an even number and this case is discarded when computing s(n). For example,

if n = 11, then n−3 = 8, which is even. Since s(n) only concerns itself with partitions
that begin with an odd number, we skip t(3).
• n− 2 is an odd number leaving the remainder 2 to be partitioned. Thus we add t(2).
• n− 1 is an even number and this case is discarded when computing s(n).
• n is an odd number and it is a valid partition for s(n). This means we add 1 to the

end of the equation.
When n is an odd number, s(n) can be written as:

s(n) = t(n− 1) + t(n− 3) + t(n− 5)... + t(2) + 1 (12.21)

Combining these two halves together, we get:

s(n) =

{
t(n− 1) + t(n− 3) + t(n− 5)... + t(1) when n is even

t(n− 1) + t(n− 3) + t(n− 5)... + t(2) + 1 when n is odd
(12.22)

Using similar reasoning again, t(n) can be written as follows:

t(n) =

{
s(n− 2) + s(n− 4) + s(n− 6)... + s(4) + s(2) + 1 when n is even

s(n− 2) + s(n− 4) + s(n− 6)... + s(3) + s(1) when n is odd
(12.23)

Since a partition may start with an odd number or an even number, f(n) = s(n) + t(n)
and it is the answer to the question. This is the number of ways to partition n using alter-
nating odd and even numbers. Section 12.4.2 explains how to find the number of partitions
using odd numbers only. The answer is expressed as h(n). A similar procedure can be used
to find the number of partitions using even numbers only. Let’s call it u(n). Of course, u(n)
is zero if n is odd.

Is h(n) + u(n) the same as s(n) + t(n)? Why? I leave this question for you to answer. If
the answer is yes, prove it. If the answer is no, explain the reason.

12.4.5 Generalizing the Integer Partition Problem

This problem has many variations, for example,
• How many “2”s are used?
• How many “3”s are used?, etc.

Recursion 181

• How many “+” symbols are used?
• How many numbers are used, and what is the general rule?

– When n is 1, one number is used.
– When n is 2, three numbers are used.
– When n is 3, eight numbers are used.
– When n is 4, twenty numbers are used.

12.4.6 How Not to Solve the Integer Partition Problem

Sometimes people try to solve these types of problems in the following way:
1. Manually count the answers for the first several values of n.
2. Observe the relationships and write a formula that satisfies these relationships.
3. Claim this formula is the answer.

This approach is logically flawed. For any finite number of pairs of (x1, y1), (x2, y2), (x3, y3),
... , (xk, yk), there is always a polynomial y = akx

k + ak−1x
k−1 + ... + a1x + a0 that passes

through these points. That does not mean this polynomial is the correct formula. In fact,
the previous examples show that the answers are not polynomials.

There is another explanation for why “conclusion by observation” is logically flawed. Do
you have a favorite television program that is broadcast daily? By observation, this program
is on air every day. Can you claim that this program will be on air forever? Of course not.
The program may stop after a few seasons or a few years. Observation of finite instances
is not a valid way to derive a general rule. Even after a thousand observations, you cannot
guarantee that it is still true next time.

The equations in (12.8), (12.9), (12.10), and (12.12) are not derived from observation of
finite cases. The equations are correct for any positive integer n. In some cases n must be
greater than some specific value, for example, n > 1 in (12.10). The equations are general
and the derivations from these equations are logically sound. When you solve this type of
problem, please remember that observation is insufficient.

Recursive formulas are actually reasonably straightforward with some practice. The key
is realizing that without using recursion, the problem may be really difficult. The simplicity
of recursion is that you can assume that you already have the answer to smaller cases.
Therefore if you can write f(n) in terms of f(smaller than n), and if you can write trivial
cases like f(0) and f(1), then that is the entire solution.

This page intentionally left blankThis page intentionally left blank

Chapter 13

Recursive C Functions

13.1 Select Balls with Restrictions . 184
13.2 One-Way Streets . 187
13.3 The Tower of Hanoi . 188
13.4 Integer Partition . 189
13.5 Factorial . 191
13.6 Fibonacci Numbers . 193
13.7 Performance Profiling with gprof . 199

In this chapter we convert the mathematical formulas from the previous chapter into C
programs. Recall that there are four steps to solving math problems that use recursion.
These steps are also used when writing C functions that use recursion.

1. Identify the argument (or arguments) of a problem. These will be, in general, the
argument (or arguments) for the recursive C function.

2. Express the solution based on the arguments.
3. Determine the simple cases when the solutions are “obvious”. The function has one

(or several) conditions detecting whether this (or these) simple case(s) can be solved
directly. This is usually referred to as the base case.

4. Derive the relationships between complex cases and simpler cases. We call this the
recursive case because the function calls itself with a simplified argument (or several
modified arguments).

A recursive function has the following structure:

return_type func(arguments)1

{2

i f (this is the base case) /* by checking the arguments */3

{4

solve the problem5

}6

e l se /* Recursive case */7

{8

func(simplified arguments) /* function calls itself */9

}10

}11

A recursive function should first check whether the arguments specify a base case. A
base case means that the function can immediately return the answer. For this reason,
the if condition (or conditions) is called the terminating condition (or conditions) of the
recursive function. The terminating conditions indicate that a base case has been reached.
When the condition is true, the problem is trivial and recursive calls are unnecessary. If the
problem is not simple, then the function enters the recursive case and the function calls itself
with simplified versions of the arguments. The following sections implement the recursive
equations in the previous chapter.

183

184 Intermediate C Programming

13.1 Select Balls with Restrictions

// balls.c1

// f(1) = 22

// f(2) = 33

// f(n) = f(n-1) + f(n-2)4

#include <stdio.h>5

#include <stdlib.h>6

int f(int m)7

// use m instead of n to distinguish m in f and n in main8

{9

/* Base cases */10

i f (m <= 0)11

{12

printf("Invalid Number %d, must be positive .\n", m);13

return -1;14

}15

i f (m == 1)16

{17

return 2; // f(1) = 218

}19

i f (m == 2)20

{21

return 3; // f(2) = 322

}23

/* Recursive case */24

int a;25

int b;26

a = f(m - 1);27

b = f(m - 2);28

return (a + b);29

}30

int main(int argc , char * argv [])31

{32

int c;33

int n;34

i f (argc < 2)35

{36

printf("need 1 integer .\n");37

return EXIT_FAILURE;38

}39

n = (int) strtol(argv[1], NULL , 10);40

c = f(n);41

printf("f(%d) = %d.\n", n, c);42

return EXIT_SUCCESS;43

}44

The following results were produced by executing this program with different arguments:

Recursive C Functions 185

n f(n)
1 2
2 3
3 5
4 8
5 13
6 21

Understanding how recursive functions work requires a full understanding of the call
stack. If you are unsure about how the call stack works, then please review Chapter 2. Let’s
see what happens when n (in main) is 3, just after finishing line 41, and before running line
42. For simplicity, the call stack does not show argc and argv.

Frame Symbol Address Value

main
n 101 3
c 100 garbage

Calling f will change the call stack as follows:

Frame Symbol Address Value

f

b 106 garbage
a 105 garbage
m 104 3

value address 103 100 (c’s address)
return location 102 line 45

main
n 101 3
c 100 garbage

Since m is greater than 2, the program will call f(m − 1) and assign the result in a.
Recursive calls follow the same procedure as any other function call. As the function is
called, the return location, value address, arguments, and local variables are pushed on to
the call stack.

Frame Symbol Address Value

f

b 111 garbage
a 110 garbage
m 109 2

value address 108 105 (a’s address)
return location 107 line 30

f

b 106 garbage
a 105 garbage
m 104 3

v value address 103 100 (c’s address)
return location 102 line 45

main
n 101 3
c 100 garbage

The value of m is 2 now and it is a base case. The function returns 3 without calling
itself again. The value 3 is written to address 105.

186 Intermediate C Programming

Frame Symbol Address Value

f

b 106 garbage
a 105 garbage → 3
m 104 3

value address 103 100 (c’s address)
return location 102 line 45

main
n 101 3
c 100 garbage

Line 30 calls f again and m is 1 this time.

Frame Symbol Address Value

f

b 111 garbage
a 110 garbage
m 109 1

value address 108 106
return location 107 line 31

f

b 106 garbage
a 105 3
m 104 3

value address 103 100 (c’s address)
return location 102 line 45

main
n 101 3
c 100 garbage

The value of m is 1 and it meets one terminating condition. The function returns 2, and
this value is written to address 106.

Frame Symbol Address Value

f

b 106 garbage → 2
a 105 3
m 104 3

value address 103 100 (c’s address)
return location 102 line 45

main
n 101 3
c 100 garbage

The program has returned to a previous invocation of f. The sum of a and b is 5. This
value is written to the address of 100.

Frame Symbol Address Value

main
n 101 3
c 100 garbage → 5

A recursive function follows the same rules as any other function call. When a function
is called, a new frame is pushed. When a function finishes, the top frame is popped. A
common misconception is that the frames of a recursive function are merged into a single
frame. This is wrong. The call stack handles recursive calls in the same way as non-recursive
calls.

Recursive C Functions 187

13.2 One-Way Streets

// oneway.c1

// implement the recursive relation for calculating2

// the number of possibilities in a city where cars can3

// only move northbound or eastbound4

#include <stdio.h>5

#include <stdlib.h>6

int f(int dx, int dy)7

/* Do not need to worry about dx < 0 or dy < 0.8

This is already handled in main. */9

{10

int a, b;11

i f ((dx == 0) || (dy == 0))12

{ /* Base case */13

return 1;14

}15

/* Recursive case */16

a = f(dx - 1, dy);17

b = f(dx , dy - 1);18

return (a + b);19

}20

int main(int argc , char * argv [])21

{22

int deltax , deltay;23

int c;24

i f (argc < 3)25

{26

printf("need 2 positive integers .\n");27

return EXIT_FAILURE;28

}29

deltax = (int) strtol(argv[1], NULL , 10);30

deltay = (int) strtol(argv[2], NULL , 10);31

i f ((deltax < 0) || (deltay < 0))32

{33

printf("need 2 positive integers .\n");34

return EXIT_FAILURE;35

}36

c = f(deltax , deltay);37

printf("f(%d, %d) = %d.\n", deltax , deltay , c);38

return EXIT_SUCCESS;39

}40

This program uses local variables to store the values returned from recursive calls:

a = f(dx - 1, dy);18

b = f(dx, dy - 1);19

return (a + b);20

Actually, the local variables are unnecessary. Instead, the three lines can be rewritten as
follows:

188 Intermediate C Programming

return f(dx - 1, dy) + f(dx , dy - 1);18

Both of these versions do exactly the same thing. The compiler actually creates temporary
variables if local variables are not used.

13.3 The Tower of Hanoi

The listing below shows how to calculate the number of moves required to move n disks
in The Tower of Hanoi problem:

// hanoi1.c1

// calculate the number of moves needed to move n disks2

#include <stdio.h>3

#include <stdlib.h>4

int f(int n)5

{6

/* Base case */7

i f (n == 1)8

{9

return 1;10

}11

/* Recursive case */12

return 2 * f(n - 1) + 1;13

}14

int main(int argc , char * argv [])15

{16

int n;17

i f (argc < 2)18

{19

printf("need one positive integer .\n");20

return EXIT_FAILURE;21

}22

n = (int) strtol(argv[1], NULL , 10);23

i f (n <= 0)24

{25

printf("need one positive integer .\n");26

return EXIT_FAILURE;27

}28

printf("f(%d) = %d.\n", n, f(n));29

return EXIT_SUCCESS;30

}31

A more interesting program prints the solution—the sequence of disk moves that solves
the problem. To do this, we create a function called move that takes four arguments:

1. The disks to move. The disks are represented by positive integers, where 1 is the
smallest disk and 2 is the second smallest disk, etc.

2. The source pole
3. The destination pole
4. The additional pole
This program follows the procedure in Section 12.3: Move the top n − 1 disks to the

additional pole (i.e., C), then move the nth disk from A to B, and then move the top n− 1
disk from C to B. Notice how short and simple the code is.

Recursive C Functions 189

// hanoi2.c1

// print the steps moving n disks2

#include <stdio.h>3

#include <stdlib.h>4

void move(int disk , char src , char dest , char additional)5

{6

/* Base case */7

i f (disk == 1)8

{9

printf("move disk 1 from %c to %c\n", src , dest);10

return;11

}12

/* Recursive case */13

move(disk - 1, src , additional , dest);14

printf("move disk %d from %c to %c\n", disk , src , dest);15

move(disk - 1, additional , dest , src);16

}17

int main(int argc , char * argv [])18

{19

int n;20

i f (argc < 2)21

{22

printf("need one positive integer .\n");23

return EXIT_FAILURE;24

}25

n = (int) strtol(argv[1], NULL , 10);26

i f (n <= 0)27

{28

printf("need one positive integer .\n");29

return EXIT_FAILURE;30

}31

move(n, ’A’, ’B’, ’C’);32

return EXIT_SUCCESS;33

}34

When the input is 3, the program’s output is:

move disk 1 from A to B

move disk 2 from A to C

move disk 1 from B to C

move disk 3 from A to B

move disk 1 from C to A

move disk 2 from C to B

move disk 1 from A to B

This output matches the steps in Fig. 12.8.

190 Intermediate C Programming

13.4 Integer Partition

The implementation of formula (12.8) in C is shown below:

sum = 0;1

for (i = 1; i < n; i ++)2

{3

// the first value is i4

// f(n - i) ways for the remaining value of n - i5

sum += f(n - i);6

}7

sum ++; // first value is n and the remaining is zero8

Notice the nearly one-to-one mapping from the mathematical expression to the C code. The
complete program is shown below.

// partition.c1

// implement the recursive relation for calculating2

// the number of partitions for a positive integer3

#include <stdio.h>4

#include <stdlib.h>5

int f(int n)6

{7

int i;8

int sum = 0;9

/* Base case */10

i f (n == 1)11

{12

return 1; // only one way to partition 113

}14

/* Recursive case */15

for (i = 1; i < n; i ++)16

{17

sum += f(n - i);18

}19

sum ++;20

return sum;21

}22

int main(int argc , char * argv [])23

{24

int n;25

i f (argc < 2)26

{27

printf("need one positive integer .\n");28

return EXIT_FAILURE;29

}30

n = (int) strtol(argv[1], NULL , 10);31

i f (n <= 0)32

{33

printf("need one positive integer .\n");34

return EXIT_FAILURE;35

Recursive C Functions 191

}36

printf("f(%d) = %d.\n", n, f(n));37

return EXIT_SUCCESS;38

}39

This program was executed with various arguments to produce the following result:

n f(n)
1 1
2 2
3 4
4 8
5 16
6 32

13.5 Factorial

Many books use factorial and Fibonacci numbers to motivate the need of recursion.
These are poor examples. This book does not start with these two popular examples for
good reasons, as explained below. The definition of factorial for positive integers or zero is:

f(n) =

{
1 when n is 0

n× f(n− 1) when n > 0
(13.1)

It is possible to define factorial for negative values or non integers; however, that definition
is beyond the scope of this book.

// factorial1.c1

#include <stdio.h>2

long int fac(int n)3

{4

i f (n < 0)5

{6

printf("n cannot be negative\n");7

return 0;8

}9

/* Base case */10

i f (n == 0)11

{12

return 1;13

}14

/* Recursive case */15

return n * fac(n - 1);16

}17

By now, the main function should be quite easy to follow:

// mainfactorial.c1

#include <stdio.h>2

#include <stdlib.h>3

192 Intermediate C Programming

#define MAXN 204

long int fac(int n);5

int main(int argc , char * argv [])6

{7

int nval;8

for (nval = 0; nval <= MAXN; nval ++)9

{10

long int fval = fac(nval);11

printf("fac (%2d) = %ld\n", nval , fval);12

}13

return EXIT_SUCCESS;14

}15

Here is the output of this program:

fac(0) = 1

fac(1) = 1

fac(2) = 2

fac(3) = 6

fac(4) = 24

fac(5) = 120

fac(6) = 720

fac(7) = 5040

fac(8) = 40320

fac(9) = 362880

fac(10) = 3628800

fac(11) = 39916800

fac(12) = 479001600

fac(13) = 6227020800

fac(14) = 87178291200

fac(15) = 1307674368000

fac(16) = 20922789888000

fac(17) = 355687428096000

fac(18) = 6402373705728000

fac(19) = 121645100408832000

fac(20) = 2432902008176640000

The function fac returns long int because the values quickly get too large for int when
n is greater than 12. The function fac is quite straightforward—a direct translation of the
mathematical definition. Why is this a bad example for introducing recursion? The reason
is that recursion is not necessary. It is possible to implement the same function without
using recursion.

// factorial2.c1

#include <stdio.h>2

long int fac2(int n)3

{4

i f (n < 0)5

{6

printf("n cannot be negative\n");7

return 0;8

}9

i f (n == 0)10

Recursive C Functions 193

{11

return 1;12

}13

long int result = 1;14

while (n > 0)15

{16

result *= n;17

n --;18

}19

return result;20

}21

This function uses while and stores the result in a local variable called result.
“All right, you can use recursion but you don’t have to. Why do you say that factorial

is a bad example?” Recursion can be more flexible than iterative loops, such as while and
for. Every loop can be expressed easily with recursion. However, the reverse can be diffi-
cult. Some problems can be solved naturally by recursion; solving these problems without
recursion can sometimes be awkward. Why is this a bad example? The recursive solution
is actually worse than the iterative solution. This brings us to the second problem: The
recursive solution is slower. Why? Recursive functions must push and pop frames on the
call stack. Pushing and popping frames takes time.

We compared the execution times of both functions. The iterative solution (using while)
is 14% to 38% faster than the recursive solution. This performance difference may not seem a
lot; however, in the next example (Fibonacci numbers), we will see a remarkable performance
difference.

13.6 Fibonacci Numbers

Calculating Fibonacci numbers is another popular example used in teaching recursion.
The numbers are defined as follows:

f(n) =

1 if n is 1

2 if n is 2

f(n− 1) + f(n− 2) if n > 2.

(13.2)

Table 13.1 lists the values of f(n) for n ≤ 10.
This formula is similar to (12.1) in Section 12.1. The difference is the starting values of

f(1) and f(2). Below is a straightforward implementation of the definition:

// fib1.c1

long int fib1(int n)2

{3

i f ((n == 1) || (n == 2)) // base case4

{5

return 1;6

}7

// recursive case8

return fib(n - 1) + fib(n - 2);9

}10

194 Intermediate C Programming

n f(n)
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55

TABLE 13.1: The first ten values of Fibonacci numbers.

If we look at the definition again, we see that it is “top-down”:

f(n) = f(n− 1) + f(n− 2) if n > 2 (13.3)

It computes f(n) by using the values of f(n− 1) and f(n− 2). If n is greater than 2, then
the function computes f(n− 1) by using the values of f(n− 2) and f(n− 3). This process
continues until n is either 1 or 2.

The following implementation does not use recursion. Because the definition itself is
recursive, the iterative solution must take a different approach:

// fib2.c1

long int fib2(int n)2

{3

i f ((n == 1) || (n == 2))4

{5

return 1;6

}7

long int fna = 1; // as fib (0) now8

long int fnb = 1; // as fib (1) now9

long int fnc; // to hold the latest value of fib10

n --; // starting at 1, not zero11

while (n > 1)12

{13

fnc = fnb + fna; // the new value14

fna = fnb;15

fnb = fnc;16

n --;17

}18

return fnc;19

}20

This may seem a little complex, but it simply calculates the Fibonacci numbers “bottom-
up”. It knows f(1) and f(2) first and stores the values in fna and fnb respectively. Then,
the function computes f(3) by using the sum of f(1) and f(2). This value is stored in fnc.
After computing f(3), the value in fnc is stored in fnb and the value in fnb is stored in
fna. At this point fnb stores f(3) and fna stores f(2), and now fnc is free to store the
fourth Fibonacci number. We are ready to compute f(4), and repeat until we get to n. This
is actually easier to imagine than the recursive case, because the Fibonacci sequence is built

Recursive C Functions 195

FIGURE 13.1: Computing Fibonacci numbers bottom-up without using recursion.

up from smallest to n, just as if you were doing the calculation by hand. Please spend some
time to understand it. Fig. 13.1 illustrates the steps.

Why do we even bother to consider the bottom-up function? Isn’t the recursive function
good enough? It certainly looks simple since it is direct translation from the mathematical
definition. The problem is that the recursive function does a lot of unnecessary work, and
is hence rather slow. Fig. 13.2 shows the ratio of the execution time for the first (recursive,
top-down) and the second (non-recursive, bottom-up) functions. It is readily apparent that
the first function is slower (takes longer) than the second. Moreover, the ratio keeps rising.
Please notice that the vertical axis is in the logarithmic scale. The first function takes as
much as 2,000 times longer than the second when n is 20.

The data in Fig. 13.2 were generated by using the following program:

// fib.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <sys/time.h>4

#define MAXN 205

#define REPEAT 1000006

long int fib(int n);7

long int fib2(int n);8

int main(int argc , char * argv [])9

{10

int nval , rept;11

struct timeval time1;12

struct timeval time2;13

f l oa t intv1 , intv2;14

for (nval = 1; nval <= MAXN; nval ++)15

{16

196 Intermediate C Programming

FIGURE 13.2: Ratio of the execution times of the recursive and the non-recursive versions
for calculating Fibonacci numbers. The recursive function is much slower and the ratio in
execution time keeps rising.

long int fval;17

gettimeofday (& time1 , NULL);18

for (rept = 0; rept < REPEAT; rept ++)19

{20

fval = fib(nval);21

}22

gettimeofday (& time2 , NULL);23

intv1 = (time2.tv_sec - time1.tv_sec) +24

1e-6 * (time2.tv_usec - time1.tv_usec);25

printf("fib (%2d) = %ld , time = %f\n",26

nval , fval , intv1);27

gettimeofday (& time1 , NULL);28

for (rept = 0; rept < REPEAT; rept ++)29

{30

fval = fib2(nval);31

}32

gettimeofday (& time2 , NULL);33

intv2 = (time2.tv_sec - time1.tv_sec) +34

1e-6 * (time2.tv_usec - time1.tv_usec);35

printf("fib2 (%2d) = %ld , time = %f\n",36

nval , fval , intv2);37

printf("ratio = %f\n", intv1/intv2);38

}39

return EXIT_SUCCESS;40

}41

This program uses gettimeofday to measure the execution time of the two functions.
gettimeofday returns the time, expressed in seconds and microseconds, since 1970-01-01
00:00:00 (UTC). The two values are stored in a structure called struct in C programs.
Structures will be discussed in great detail later in this book. This program measures the

Recursive C Functions 197

difference of time before and after calculating Fibonacci numbers. The basic structure of
measuring a function’s execution time is

1. get the current time, call it t1;
2. call the function;
3. get the current time, call it t2.
The execution time of this function is t2− t1. This method of measuring execution time

has limitations. The time t1 and t2 has finite precision. If this function’s execution time
is too short, t2 − t1 will be too small (possibly zero). To obtain acceptable accuracy, the
execution time needs to be much longer than the precision. For gettimeofday, the precision
is microseconds; thus, the execution time should be much longer than one microsecond. This
is the reason why the program calls the functions calculating Fibonacci numbers multiple
times between calling gettimeofday. The values may be slightly different when the program
is run multiple times because your computer also runs many other programs. This is the
last few lines of the program’s output:

fib (16) = 987, time = 2.161532

fib2 (16) = 987, time = 0.004730

ratio = 456.983490

fib (17) = 1597, time = 3.500462

fib2 (17) = 1597, time = 0.005093

ratio = 687.308472

fib (18) = 2584, time = 5.678572

fib2 (18) = 2584, time = 0.005474

ratio = 1037.371704

fib (19) = 4181, time = 9.399386

fib2 (19) = 4181, time = 0.005677

ratio = 1655.696045

fib (20) = 6765, time = 15.530513

fib2 (20) = 6765, time = 0.007862

ratio = 1975.389648

As you can see, the ratios of the execution time grow from 457 to 1975.

 (a) (b) (c) (d)

f(5) = f(4) + f(3)

f(3) + f(2) f(2) + f(1)

f(2) + f(1) 1 1 1

1 1

f(5) = f(4) + f(3)

f(3) + f(2) f(2) + f(1)

f(2) + f(1) 1 1 1

f(5) = f(4) + f(3)

f(3) + f(2) f(2) + f(1)

f(5) = f(4) + f(3)

FIGURE 13.3: Computing f(5) requires calling f(4) and f(3). Computing f(4) requires
calling f(3) and f(2).

Why is there such a large difference in the execution time? Fig. 13.3 illustrates the
sequence of computation. For the first function, to compute f(5), it is necessary to compute
f(4) and f(3). To compute f(4), it is necessary to compute f(3) and f(2). Fig. 13.4 redraws
Fig. 13.3. This looks like a “tree”. You need to use some imagination because the tree’s
“root” is at the top and the branches go downwards. Computing each value requires the
sum of two values, until reaching the bottom, called leaves. The leaves are the base cases,
where the recursion meets the terminating conditions, namely f(1) or f(2).

Let’s do a little more mathematics here to figure out some properties of this tree. By
definition,

198 Intermediate C Programming

f(4) f(3)

f(3) f(2) f(2) f(1)

f(2) f(1)

1 1 1

1 1

f(5)

+

+ +

+

FIGURE 13.4: Redraw Fig. 13.3. This looks like a “tree”: computing each value requires
the sum of two values.

{
f(n) = f(n− 1) + f(n− 2)

f(n− 1) = f(n− 2) + f(n− 3)
(13.4)

Therefore,

f(n) = f(n− 1) + f(n− 2)
= (f(n− 2) + f(n− 3)) + f(n− 2)
= 2f(n− 2) + f(n− 3).

(13.5)

Continuing this derivation for a few more steps we have:

f(n) = f(n− 1) + f(n− 2)
= 2f(n− 2) + f(n− 3)
= 2(f(n− 3) + f(n− 4)) + f(n− 3)
= 3f(n− 3) + 2f(n− 4)
= 3(f(n− 4) + f(n− 5)) + 2f(n− 4)
= 5f(n− 4) + 3f(n− 5)
= 5(f(n− 5) + f(n− 6)) + 3f(n− 5)
= 8f(n− 5) + 5f(n− 6)
= 8(f(n− 6) + f(n− 7)) + 5f(n− 6)
= 13f(n− 6) + 8f(n− 7).

(13.6)

Table 13.2 lists the coefficients for computing f(n). When comparing this table with
the values in Table 13.1, you may find that the coefficient of f(n− k) is actually f(k + 1).
Table 13.2 and Fig. 13.4 both express similar concepts. Fig. 13.4 computes f(5) so n is 5
and f(2) is f(n − 3). The coefficient for f(n − 3) is 3. If we count the occurrences of f(2)
in Fig. 13.4, we find that it is called three times.

The recursive method for calculating Fibonacci numbers is slower because it computes
the same value over and over again. When computing f(n− 1), it has to compute f(n− 2).
However, the recursive function in Section 13.6 does not remember the value for f(n − 2)
and then computes the value again later. As n becomes larger, the function performs more
and more redundant computations and becomes slower and slower. It is unclear why many
books use Fibonacci numbers to motivate the concept of recursion.

Recursive C Functions 199

function coefficient
f(n-1) 1 f(2)
f(n-2) 2 f(3)
f(n-3) 3 f(4)
f(n-4) 5 f(5)
f(n-5) 8 f(6)
f(n-6) 13 f(7)

TABLE 13.2: Coefficients for computing f(n).

Does this mean recursion is bad? Does this mean that recursion is slow? Why should we
even bother to learn recursion? The problem is not recursion, but the example. We cannot
generalize from a bad example to say that recursion is slow. Recursion can be used to good
advantage in some time-critical applications. If you have a nail and a knife, you will find
that hitting the nail with a knife is difficult. Does this mean a knife is bad? If you need to
hit a nail, you need a hammer. A knife is a bad tool for hitting a nail. If you want to cut
paper, a knife is better than a hammer. If you have a bolt, you need a wrench. A hammer
is not better than a wrench and a wrench is not better than a hammer. They are different.
One is better than the other in some scenarios. If a book tells you a hammer is better
than a wrench, you will say, “This doesn’t make sense. In some cases, a wrench is better.”
You cannot generalize this example and conclude that recursion is slower. Some books do
not explain that this particular top-down method is slower than this bottom-up method.
As a result some students mistakenly think recursion is slow by generalizing this example.
Some other books explain that this top-down method is slower than this bottom-up method
without further explanation. These books give students the strong impression that recursion
is slow. The truth is that recursion is a good approach for some problems, not all.

13.7 Performance Profiling with gprof

Many studies on software performance find that performance is generally dominated
by just a few factors. This is true for both simple and complex systems. A general rule of
thumb is “10% of the code consumes 90% of the time”. Improving the correct 10% of code
will have a noticeable impact on performance. Conversely, improving the other 90% of code
will have negligible impact. The question is how to find the 10% of interest. Guessing is not
a good approach. Even experienced programmers find it very hard to predict which parts
of a complex program cause performance bottlenecks.

Experienced programmers know that tools can help identify that 10% of the code. A
tool called gprof is designed specifically for this purpose. To use gprof, add -pg after gcc
and execute the program as usual. For example:

$ gcc -Wall -Wshadow -pg fib.c fib1.c fib2.c -o fibprog

Consider the Fibonacci functions referenced earlier. After running the program, a special
file called gmon.out is generated. This file stores the profiling information for running the
program and it is not readable using a text editor. Please use the gprof program to view
the content in gmon.out. The command is:

200 Intermediate C Programming

$ gprof fibprog

The output is something like this:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

92.23 8.89 8.89 2000000 4.45 4.45 fib

7.52 9.62 0.72

frame_dummy

0.84 9.70 0.08 2000000 0.04 0.04 fib2

0.10 9.71 0.01 main

granularity: each sample hit covers 2 byte(s) for 0.10% of

9.71 seconds

index % time self children called name

<spontaneous >

[1] 92.5 0.01 8.97 main [1]

8.89 0.00 2000000/2000000 fib [2]

0.08 0.00 2000000/2000000 fib2 [4]

3538000000 fib [2]

8.89 0.00 2000000/2000000 main [1]

[2] 91.6 8.89 0.00 2000000+3538000000 fib [2]

3538000000 fib [2]

<spontaneous >

[3] 7.5 0.72 0.00 frame_dummy [3]

0.08 0.00 2000000/2000000 main [1]

[4] 0.8 0.08 0.00 2000000 fib2 [4]

This output says that 92.23% of the time is spent on the function fib and only 0.84%
time is spent on the function fib2. The main function calls fib 2000000 times (REPEAT ×
MAXN). In [2], the report says that fib is called itself 3538000000 times. In contrast, [4] says
that fib2 is called 2000000 times and it does not call itself.

How can we use this information to help identify the opportunities for improving perfor-
mance? First, the report says more than 90% time is spent on fib. This suggests that the
function should be carefully inspected for better performance. Second, the report says that
main calls fib 2000000 and fib calls itself 3538000000 times, much more than the 2000000
invocations by main. This also suggests that fib calls itself excessively and is a candidate
for performance improvement.

In this example, the program requires no inputs. Complex programs usually accept
inputs that specify the programs’ actions. Profiling a program effectively often requires
using representative inputs. If a particular line of code is not executed for a particular set
of inputs, gprof will contain no information about that line. Moreover, gprof is sampling
based. The top of the report says that the sampling rate is 0.01 seconds. If the execution
time of a program is too short, gprof will not be able to give accurate results.

Chapter 14

Integer Partition

14.1 Stack and Heap Memory . 202
14.2 Trace Recursive Function Calls . 210
14.3 Generating Partitions with Restrictions . 213

14.3.1 Using Odd Numbers Only . 214
14.3.2 Using Sequences of Increasing Numbers . 215
14.3.3 Using Alternating Odd and Even Numbers . 215
14.3.4 Using gprof and gcov to Identify Performance Bottlenecks 216

The previous two chapters explained how to obtain the formula for partitioning integers
and also how to write a C program that implements the formula. This chapter explains how
to print the partitions and also introduces some variations on the problem. The following
program prints the partitions for an integer that is specified on the command line:

// partition.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

void printPartition(int * arr , int length)5

{6

int ind;7

for (ind = 0; ind < length - 1; ind ++)8

{9

printf("%d + ", arr[ind]);10

}11

printf("%d\n", arr[length - 1]);12

}13

14

void partition(int * arr , int ind , int left)15

{16

int val;17

i f (left == 0)18

{19

printPartition(arr , ind);20

return; // not necessary21

}22

for (val = 1; val <= left; val ++)23

{24

arr[ind] = val;25

partition(arr , ind + 1, left - val);26

}27

}28

29

201

202 Intermediate C Programming

int main(int argc , char * argv [])30

{31

i f (argc != 2)32

{33

return EXIT_FAILURE;34

}35

int n = (int) strtol(argv[1], NULL , 10);36

i f (n <= 0)37

{38

return EXIT_FAILURE;39

}40

int * arr;41

arr = malloc(s i z eo f (int) * n);42

partition(arr , 0, n);43

free (arr);44

return EXIT_SUCCESS;45

}46

The partition function is the core of this program. This function takes three arguments:
1. arr is an integer pointer. It is an array that stores the numbers used in a given

partition.
2. ind is an integer. It is an index of the array. The value indicates where the next

element will be written. It also gives the length of the partition so far.
3. left is an integer. It is the remaining value to be partitioned.

The return at line 21 is unnecessary. When left is zero, the function will not enter the
for loop. Adding this return makes the program easier to read.

When main calls partition, ind is zero—the index of the first element of the array. The
value left is the remaining value to be partitioned. Even though this program is short, it
reviews many important concepts explained earlier. Thus, it is worth explaining in detail.

14.1 Stack and Heap Memory

Suppose the value of n is 4. The following table shows the stack and heap memory after
running line 42 and before line 43. The table assumes that each integer occupies 4 bytes
(sizeof(int) is 4).

Frame Symbol Address Value

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 garbage
arr[2] 10008 garbage
arr[1] 10004 garbage
arr[0] 10000 garbage

(b) Heap Memory

Integer Partition 203

This is the call stack and the heap memory after entering the function partition. RL
means return location.

Frame Symbol Address Value

partition

val 106 garbage
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 garbage
arr[2] 10008 garbage
arr[1] 10004 garbage
arr[0] 10000 garbage

(b) Heap Memory

The value of left is not zero and the terminating condition at line 18 is false. The
function continues to the for loop at lines 23–27. In this for loop, we let val iterate from
1 to left. These are all the possible values that can be used. The value of val starts at 1.
Thus line 25 first assigns 1 to arr[0].

Frame Symbol Address Value

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 garbage
arr[2] 10008 garbage
arr[1] 10004 garbage
arr[0] 10000 garbage → 1

(b) Heap Memory

The function then calls itself at line 26. Please notice the values of ind and left. The
index has changed from 0 to 1 because line 26 uses ind + 1. This is the next position in arr

for the next value. In the recursive call, the function needs to partition 3 because left - val

is 3. That is, we wrote 1 to position 0, and now we want to partition n− 1 = 4− 1 = 3 into
the remaining portion of arr. Please pay attention to the top frame of the call stack.

204 Intermediate C Programming

Frame Symbol Address Value

partition

val 111 garbage
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory.

Symbol Address Value
arr[3] 10012 garbage
arr[2] 10008 garbage
arr[1] 10004 garbage
arr[0] 10000 garbage → 1

(b) Heap Memory

The for loop starts with val equal to 1. Line 25 assigns 1 to arr[1] because ind is 1.

Frame Symbol Address Value

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 garbage
arr[2] 10008 garbage
arr[1] 10004 garbage → 1
arr[0] 10000 garbage → 1

(b) Heap Memory

The function calls itself again at line 26.

Integer Partition 205

Frame Symbol Address Value

partition

val 116 garbage
left 115 2
ind 114 2
arr 113 10000
RL 112 line 27

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 garbage
arr[2] 10008 garbage
arr[1] 10004 garbage → 1
arr[0] 10000 garbage → 1

(b) Heap Memory

Continuing these steps, left eventually decreases and becomes zero.

Frame Symbol Address Value

partition

val 126 garbage
left 125 0
ind 124 4
arr 123 10000
RL 122 line 27

partition

val 121 1
left 120 1
ind 119 3
arr 118 10000
RL 117 line 27

partition

val 116 1
left 115 2
ind 114 2
arr 113 10000
RL 112 line 27

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

206 Intermediate C Programming

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 1
arr[2] 10008 1
arr[1] 10004 1
arr[0] 10000 1

(b) Heap Memory

Now the value of left is 0 and the terminating condition at line 18 is true. This means
that we have reached a base case, and line 20 calls printPartition and prints the 4
elements in the array. Four elements are printed because ind is 4. Remember, ind gives
the next position to write an element into arr, and it also gives the length of the partition
so far. If you think about it carefully, you will see that these two things are equivalent.
Therefore, we can pass ind as the length of the array to printPartition. The program
now prints:

1 + 1 + 1 + 1

The function then returns because of line 21. The return statement at line 21 is not strictly
necessary, because the function will not call itself again. This is because the for loop starts
at 1 and val must be smaller than or equal to left. Because left is zero the function will
not enter the for loop, and will return normally anyway.

It is good practice to put the line 21 return statement. When people read recursive
functions they expect the functions to be divided neatly into the base case and the recursive
case. The return statement makes the base case clear. Clearly no recursion is going to
happen. No further analysis is required. Making code as clear as possible is one of the most
important parts of good programs. After meeting the terminating condition, the top frame
of the call stack is popped, and the program continues at line 27.

Frame Symbol Address Value

partition

val 121 1
left 120 1
ind 119 3
arr 118 10000
RL 117 line 27

partition

val 116 1
left 115 2
ind 114 2
arr 113 10000
RL 112 line 27

Integer Partition 207

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 1
arr[2] 10008 1
arr[1] 10004 1
arr[0] 10000 1

(b) Heap Memory

For the next iteration, val increments to two. This violates the condition val <= left

and the for loop exists. Since the function has nothing else to do after the for loop, the
top frame is popped. The program now continues at line 27.

Frame Symbol Address Value

partition

val 116 1
left 115 2
ind 114 2
arr 113 10000
RL 112 line 27

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

208 Intermediate C Programming

Symbol Address Value
arr[3] 10012 1
arr[2] 10008 1
arr[1] 10004 1
arr[0] 10000 1

(b) Heap Memory

Now the for loop enters the next iteration: val becomes 2 and the condition val <=
left is satisfied. Line 25 assigns 2 to arr[2] and line 26 calls the function itself again.

Frame Symbol Address Value

partition

val 121 garbage
left 120 0
ind 119 3
arr 118 10000
RL 117 line 27

partition

val 116 2
left 115 2
ind 114 2
arr 113 10000
RL 112 line 27

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 1
arr[2] 10008 1 → 2
arr[1] 10004 1
arr[0] 10000 1

(b) Heap Memory

Because left is zero, the terminating condition at line 18 is true. The program prints
the first 3 elements (because ind is 3) in arr. So the program prints:

1 + 1 + 2

Line 21 returns and the top frame is popped.

Integer Partition 209

Frame Symbol Address Value

partition

val 116 2
left 115 2
ind 114 2
arr 113 10000
RL 112 line 27

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 1
arr[2] 10008 2
arr[1] 10004 1
arr[0] 10000 1

(b) Heap Memory

The next iteration increments val to 3 but the condition val <= left is not satisfied.
The function exits the for loop. Since the function has nothing else to do after the for

loop, the function returns and the top frame is popped.

Frame Symbol Address Value

partition

val 111 1
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

210 Intermediate C Programming

Symbol Address Value
arr[3] 10012 1
arr[2] 10008 2
arr[1] 10004 1
arr[0] 10000 1

(b) Heap Memory

For the next iteration, val becomes 2 and assigns 2 to arr[1].

Frame Symbol Address Value

partition

val 111 2
left 110 3
ind 109 1
arr 108 10000
RL 107 line 27

partition

val 106 1
left 105 4
ind 104 0
arr 103 10000
RL 102 line 44

main
arr 101 10000
n 100 4

(a) Stack Memory

Symbol Address Value
arr[3] 10012 1
arr[2] 10008 2
arr[1] 10004 1 → 2
arr[0] 10000 1

(b) Heap Memory

This process may seem tedious. Fortunately, computers are good at tedious work. Please
practice a few times and ensure that you fully understand the changes in the call stack and
heap memory. Then, leave the details to computers.

14.2 Trace Recursive Function Calls

Another way to understand this program is to draw its call tree. A call tree is a graphical
representation of the relationship between function calls. This tree is drawn “inverted” with
the root at the top, and the leaves at the bottom. Consider the following example:

void f1()1

{2

f2();3

}4

Fig. 14.1 illustrates the calling relation of the two functions.
Here is another example and Fig. 14.2 shows the calling relations:

Integer Partition 211

FIGURE 14.1: Graphical illustration of f1 calls f2.

void f1()1

{2

f2();3

f3();4

}5

FIGURE 14.2: Graphical illustration of f1 calls f2 and f3.

This is the third example and the calling relation is shown in Fig. 14.3.

void f1()1

{2

f2();3

f3();4

}5

void f2()6

{7

f3();8

}9

FIGURE 14.3: Graphical illustration of f1 calls f2 and f3; f2 also calls f3.

Here we add a loop to the function f1 and Fig. 14.4 shows the relation.

void f1()1

{2

int count;3

for (count = 1; count < 4; count ++)4

{5

f2();6

}7

f3();8

212 Intermediate C Programming

}9

void f2()10

{11

f3();12

}13

FIGURE 14.4: Graphical illustration of f1 calls f2 in a loop and f3 outside a loop; f2
calls f3.

Next, let’s consider the skeleton of the partition function:

void partition(int * arr , int ind , int left)1

{2

int val;3

for (val = 1; val <= left; val ++)4

{5

arr[ind] = val;6

partition(arr , ind + 1, left - val);7

}8

}9

Fig. 14.5 illustrates the calling relation.

FIGURE 14.5: Graphical illustration of partition when the initial value of left is 3.

When left is 3, then val can be 1, 2, or 3.
1. When val is 1, left-val is 2. Thus, partition(arr, 1, 2) is called.
2. When val is 2, left-val is 1. Thus, partition(arr, 1, 1) is called.
3. When val is 3, left-val is 0. Thus, partition(arr, 1, 0) is called.

When left is 2, val can be 1 or 2. The calling relationship is illustrated in Fig. 14.6 and
Fig. 14.7.

The call tree is a different way to help understand the calling relation. It is a higher
level representation than the call stack because each call is represented by arguments and
we do not need to examine all of the addresses and values used in each call.

Integer Partition 213

FIGURE 14.6: Graphical illustration of partition when the value of left is 2.

FIGURE 14.7: Graphical illustration of partition when the value of left is 1.

14.3 Generating Partitions with Restrictions

The program at the beginning of this chapter prints all possible partitions. This section
explains how to change the program such that it generates partitions with restrictions, for
example, partitioning with odd numbers or using sequences of increasing numbers. One
simple solution is to check whether the restrictions have been satisfied before printing.
Thus, in the base case, before printing anything, the function checks whether this partition
is valid under the restriction. For example, if we are partitioning with odd numbers only,
printPartition can be modified as follows:

void printPartition(int * arr , int length)1

{2

int ind;3

// check whether any number is even4

// if an even number is used , do not print anything5

for (ind = 0; ind < length; ind ++)6

214 Intermediate C Programming

{7

i f ((arr[ind] % 2) == 0)8

{9

return;10

}11

}12

for (ind = 0; ind < length - 1; ind ++)13

{14

printf("%d + ", arr[ind]);15

}16

printf("%d\n", arr[length - 1]);17

}18

To check whether the numbers form an increasing sequence:

void printPartition(int * arr , int length)1

{2

int ind;3

for (ind = 0; ind < length - 1; ind ++)4

{5

i f (arr[ind] >= arr[ind + 1]) // not increasing6

{7

return;8

}9

}10

for (ind = 0; ind < length - 1; ind ++)11

{12

printf("%d + ", arr[ind]);13

}14

printf("%d\n", arr[length - 1]);15

}16

However, checking before printing is inefficient because many invalid partitions have al-
ready been generated. Instead, a more efficient solution does not generate invalid partitions.
This section explains how to generate valid partitions satisfying one of the following restric-
tions: (i) using odd numbers only, (ii) using increasing numbers, and (iii) using alternating
odd and even numbers.

14.3.1 Using Odd Numbers Only

The function partition generates only partitions that meet the criteria. It is thus much
faster than an approach where all partitions are generated and then “filtered” before being
printed. If only odd numbers are used, val can be an odd number only.

void partition(int * arr , int ind , int left)1

{2

int val;3

i f (left == 0)4

{5

printPartition(arr , ind);6

return;7

}8

for (val = 1; val <= left; val += 2) // odd numbers only9

Integer Partition 215

{10

arr[ind] = val;11

partition(arr , ind + 1, left - val);12

}13

}14

This will generate fewer partitions and all of them are valid.

14.3.2 Using Sequences of Increasing Numbers

To generate partitions using increasing numbers, the smallest value of val must be
greater than the most recently used value stored in arr. However, if ind is zero, then no
previously used value is stored in arr, and val can start from one.

void partition(int * arr , int ind , int left)1

{2

int val;3

i f (left == 0)4

{5

printPartition(arr , ind);6

return;7

}8

int min = 1;9

i f (ind != 0)10

{11

min = arr[ind - 1] + 1;12

}13

for (val = min; val <= left; val ++)14

{15

arr[ind] = val;16

partition(arr , ind + 1, left - val);17

}18

}19

14.3.3 Using Alternating Odd and Even Numbers

To generate alternating odd and even numbers, the function must check whether ind

is zero. If it is zero, val can be either odd or even, because val is being written into the
first position of the partition. If ind is greater than zero, then the function needs to check
arr[ind - 1]. If arr[ind - 1] is odd, then val must be an even number. If arr[ind - 1]

is even, then val must be an odd number. This is checked in line 18.

void partition(int * arr , int ind , int left)1

{2

int val;3

i f (left == 0)4

{5

printPartition(arr , ind);6

return;7

}8

for (val = 1; val <= left; val ++)9

{10

216 Intermediate C Programming

int valid = 0;11

i f (ind == 0) // no restriction for the first number12

{13

valid = 1;14

}15

e l se16

{17

valid = (arr[ind - 1] % 2) != (val % 2);18

}19

i f (valid == 1)20

{21

arr[ind] = val;22

partition(arr , ind + 1, left - val);23

}24

}25

}26

Line 18 tests whether arr[ind - 1] and val are both even or both odd. As you can see,
with only a few small changes, the program can print the solutions for the integer partition
problem under different restrictions.

14.3.4 Using gprof and gcov to Identify Performance Bottlenecks

Section 13.7 explains how to use gprof to identify opportunities for performance im-
provement. This section uses gprof to compare different ways to restrict integer partitions.
In the following program, partition1 generates only valid partitions, but partition2 gen-
erates all possible partitions and uses isValid to decide whether or not to print a given
partition. The function printPartition does nothing in this example because printing
many lines can noticeably slow down a program. Since both programs print the same re-
sult, there is no reason for examining this function. We can examine the performance of
partition1 and partition2 without the distraction of printPartition.

// comppartition.c1

// partition using alternating odd and even numbers2

// two ways to implement the partition:3

// 1. check before recursive calls4

// 2. generate all partitions and check before printing5

#include <stdio.h>6

#include <stdlib.h>7

void printPartition(int * arr , int length)8

{9

/*10

int ind;11

for (ind = 0; ind < length - 1; ind ++)12

{13

printf ("%d + ", arr[ind]);14

}15

printf ("%d\n", arr[length - 1]);16

*/17

}18

// 1. generate only valid partitions19

void partition1(int * arr , int ind , int left)20

Integer Partition 217

{21

int val;22

i f (left == 0)23

{24

printPartition(arr , ind);25

return;26

}27

for (val = 1; val <= left; val ++)28

{29

int valid = 0;30

i f (ind == 0) // no restriction for the first number31

{32

valid = 1;33

}34

e l se35

{36

valid = (arr[ind - 1] % 2) != (val % 2);37

}38

i f (valid == 1)39

{40

arr[ind] = val;41

partition1(arr , ind + 1, left - val);42

}43

}44

}45

// 2. before printing , check whether the partition is valid46

// check whether the numbers are alternating odd and even47

// return 1 if valid48

// return 0 if invalid49

int isValid(int * arr , int len)50

{51

i f (len <= 1) // if only one number , it is valid52

{53

return 1;54

}55

int ind;56

for (ind = 2; ind < len; ind += 2)57

{58

59

// invalid if they are different60

i f ((arr[ind] % 2) != (arr [0] % 2))61

{62

return 0;63

}64

}65

for (ind = 1; ind < len; ind += 2)66

{67

68

// invalid if they are the same69

i f ((arr[ind] % 2) == (arr [0] % 2))70

{71

218 Intermediate C Programming

return 0;72

}73

}74

return 1;75

}76

// generate all possible partitions , including invalid77

// check before printing78

void partition2(int * arr , int ind , int left)79

{80

int val;81

i f (left == 0)82

{83

i f (isValid(arr , ind) == 1)84

{85

printPartition(arr , ind);86

}87

return;88

}89

for (val = 1; val <= left; val ++)90

{91

arr[ind] = val;92

partition2(arr , ind + 1, left - val);93

}94

}95

96

int main(int argc , char * argv [])97

{98

i f (argc != 2)99

{100

return EXIT_FAILURE;101

}102

int n = (int) strtol(argv[1], NULL , 10);103

i f (n <= 0)104

{105

return EXIT_FAILURE;106

}107

int * arr;108

arr = malloc(s i z eo f (int) * n);109

printf("-----Partition 1-----\n");110

partition1(arr , 0, n);111

printf("-----Partition 2-----\n");112

partition2(arr , 0, n);113

free (arr);114

return EXIT_SUCCESS;115

}116

This is the report from gprof when n is 30.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

Integer Partition 219

time seconds seconds calls s/call s/call name

55.74 6.75 6.75 1 6.75 11.99 partition2

43.28 11.99 5.24 536870912 0.00 0.00 isValid

1.50 12.17 0.18 1 0.18 0.18 partition1

0.00 12.17 0.00 202786 0.00 0.00 printPartition

index % time self children called name

<spontaneous >

[1] 100.0 0.00 12.17 main [1]

6.75 5.24 1/1 partition2 [2]

0.18 0.00 1/1 partition1 [4]

1073741823 partition2 [2]

6.75 5.24 1/1 main [1]

[2] 98.5 6.75 5.24 1+1073741823 partition2 [2]

5.24 0.00 536870912/536870912 isValid [3]

0.00 0.00 101393/202786 printPartition [5]

1073741823 partition2 [2]

5.24 0.00 536870912/536870912 partition2 [2]

[3] 43.1 5.24 0.00 536870912 isValid [3]

308288 partition1 [4]

0.18 0.00 1/1 main [1]

[4] 1.5 0.18 0.00 1+308288 partition1 [4]

0.00 0.00 101393/202786 printPartition [5]

308288 partition1 [4]

0.00 0.00 101393/202786 partition1 [4]

0.00 0.00 101393/202786 partition2 [2]

[5] 0.0 0.00 0.00 202786 printPartition [5]

This report shows that nearly 99% of the program’s execution time is taken by
partition2 (55.7%) and isValid (43.3%). Since isValid is called only by partition2, the
report shows that partition2 takes 98.5% of the time. In contrast, partition1 takes only
1.5% of the time. Why is there such a large difference? The reason is that partition2 gen-
erates many invalid partitions and then uses isValid to check before printing. In contrast,
partition1 generates only valid partitions. The latter approach reduces huge portions of
the call tree, and is thus much more efficient.

Please notice that [4] shows printPartition is called by partition1 101393 times
and by partition2 101393 times. This is expected since partition1 and partition2

should print exactly the same partitions. The function partition2 is called 1073741823
times by recursion but partition1 is called only 308288 times. The report also shows that
isValid is called 536870912 times but printPartition is called only 202786 times (by
both partition1 and partition2). This means that most of the generated partitions are
invalid and are not printed. This is another indication that partition2 generates many
invalid partitions. Notice that 55.74%, 43.28%, and 1.50% sum to 100.52%. How can it be
possible that the cumulative time is above 100%? This shows a limitation of gprof: This
tool is intended to be fast but the accuracy is not so great. Profiling code always interferes
with the normal execution of the code, and there must be a trade-off somewhere.

When we want to improve a program’s performance, then we first need to identify
the functions that take the most amount of time. We can get some help by using gprof.

220 Intermediate C Programming

After finding the functions, we need to think about whether these functions are doing
any unnecessary work. Eliminating unnecessary computation should be the first step in
improving performance. Note that this is also the principle behind qsort: It uses transitivity
to eliminate unnecessary comparisons.

We can also use gcov to find the opportunities for improving performance. This is
primarily used to examine test coverage: It helps us understand the quality of the tests.
Section 5.5 explains how to use gcov to examine test coverage. Here we show how to use
gcov to look for performance bottlenecks. To run gcov, we must add -fprofile-arcs

-ftest-coverage after gcc. The program can be executed normally. When the program
runs, two files are generated: One has .gcda extension and the other has .gcno extension.
The next step is to run the gcov command. It will generate another file whose extension
is .gcov. This is the file that we want to examine. Here are the contents of the file from a
sample run (suppose the value of n is 30).

-: 0: Source:gprofeg.c

-: 0: Graph:gprofeg.gcno

-: 0:Data:gprofeg.gcda

-: 0:Runs:1

-: 0: Programs :1

-: 1:// partition using alternating odd and even

numbers

-: 2:// two ways to implement the partition:

-: 3:// 1. check before recursive calls

-: 4:// 2. generate all partitions and check

before printing

-: 5:# include <stdio.h>

-: 6:# include <stdlib.h>

-: 7:

202786: 8:void printPartition(int * arr , int length)

-: 9:{

-: 10: /*

-: 11: int ind;

-: 12: for (ind = 0; ind < length - 1; ind ++)

-: 13: {

-: 14: printf ("%d + ", arr[ind]);

-: 15: }

-: 16: printf ("%d\n", arr[length - 1]);

-: 17: */

202786: 18:}

-: 19:

-: 20:// 1. do not generate invalid partial

partitions

308289: 21:void partition1(int * arr , int ind , int left)

-: 22:{

-: 23: int val;

308289: 24: i f (left == 0)

-: 25: {

101393: 26: printPartition(arr , ind);

409682: 27: return;

-: 28: }

835786: 29: for (val = 1; val <= left; val ++)

Integer Partition 221

-: 30: {

628890: 31: int valid = 0;

628890: 32: i f (ind == 0) // no restriction for the

first number

-: 33: {

30: 34: valid = 1;

-: 35: }

-: 36: e l se
-: 37: {

628860: 38: valid = (arr[ind - 1] % 2) != (val

% 2);

-: 39: }

628890: 40: i f (valid == 1)

-: 41: {

308288: 42: arr[ind] = val;

308288: 43: partition1(arr , ind + 1, left -

val);

-: 44: }

-: 45: }

-: 46:}

-: 47:

-: 48:// 2. before printing , check whether the

partition is valid

-: 49:// check whether the numbers are alternating

odd and even

-: 50:// return 1 if valid

-: 51:// return 0 if invalid

536870912: 52: int isValid(int * arr , int len)

-: 53:{

536870912: 54: i f (len <= 1) // if only one number , it is

valid

-: 55: {

1: 56: return 1;

-: 57: }

-: 58: int ind;

1304963113: 59: for (ind = 2; ind < len; ind += 2)

-: 60: {

-: 61:

-: 62: // invalid if they are different

1283973260: 63: i f ((arr[ind] % 2) != (arr [0] % 2))

-: 64: {

515881058: 65: return 0;

-: 66: }

-: 67: }

33079750: 68: for (ind = 1; ind < len; ind += 2)

-: 69: {

-: 70:

-: 71: // invalid if they are the same

32978358: 72: i f ((arr[ind] % 2) == (arr [0] % 2))

-: 73: {

20888461: 74: return 0;

222 Intermediate C Programming

-: 75: }

-: 76: }

101392: 77: return 1;

-: 78:}

-: 79:

1073741824: 80:void partition2(int * arr , int ind , int left)

-: 81:{

-: 82: int val;

1073741824: 83: i f (left == 0)

-: 84: {

536870912: 85: i f (isValid(arr , ind) == 1)

-: 86: {

101393: 87: printPartition(arr , ind);

-: 88: }

1610612736: 89: return;

-: 90: }

1610612735: 91: for (val = 1; val <= left; val ++)

-: 92: {

1073741823: 93: arr[ind] = val;

1073741823: 94: partition2(arr , ind + 1, left - val);

-: 95: }

-: 96:}

-: 97:

1: 98: int main(int argc , char * argv [])

-: 99:{

1: 100: i f (argc != 2)

-: 101: {

#####: 102: return EXIT_FAILURE;

-: 103: }

1: 104: int n = (int) strtol(argv[1], NULL , 10);

1: 105: i f (n <= 0)

-: 106: {

#####: 107: return EXIT_FAILURE;

-: 108: }

-: 109: int * arr;

1: 110: arr = malloc(s i z eo f (int) * n);

1: 111: printf("-----Partition 1-----\n");

1: 112: partition1(arr , 0, n);

1: 113: printf("-----Partition 2-----\n");

1: 114: partition2(arr , 0, n);

1: 115: free (arr);

1: 116: return EXIT_SUCCESS;

-: 117:}

Please pay special attention to lines 85 and 87. Line 85 says isValid is called 536870912
times but it is true only 101393 times. In other words, most generated partitions are invalid.
This is another way to obtain the same information: partition2 generates many invalid
partitions.

Chapter 15

Programming Problems Using Recursion

15.1 Binary Search . 223
15.2 Quick Sort . 226
15.3 Permutations and Combinations . 232
15.4 Stack Sort . 236

15.4.1 Example 1 . 236
15.4.2 Example 2 . 237
15.4.3 Example 3 . 237
15.4.4 Example 4 . 238
15.4.5 Stack Sortable . 238

15.5 Tracing a Recursive Function . 242
15.6 A Recursive Function with a Mistake . 244

This chapter describes several problems that can be solved using recursion.

15.1 Binary Search

A binary search is an efficient way to search for something in a sorted array. The function
definition should be something like:

int search(int * arr , int len , int key)1

The function search returns the index of key within arr. If arr does not contain this
key, then the function returns −1. The arguments mean the following:
• arr: an array of integers. The elements are distinct and sorted in the ascending order.
• len: the length of the array, i.e., the number of elements in the array.
• key: the value to search for. Think of key as the proverbial needle in the haystack.
Since the array is already sorted, it is possible to quickly discard many elements by

comparing key with the element at the center of the array. If key is larger than that
element, we do not need to search the lower part of the array, i.e., the part before the center
element. If key is smaller than that element, we do not need to search the upper part of
the array. This idea can be generalized such that instead of considering the whole array, we
are only considering a contiguous part of the array. As such, there are four scenarios:
• If the contiguous part of the array has no elements, then it is impossible to find key

and the function returns −1.
• If key is the same as the center of the contiguous part of the array, then the index

has been found, and we return that index.
• If the key is greater than the center element, then the function discards the lower half

(the elements with smaller values) of the array, and considers the upper half.

223

224 Intermediate C Programming

• If the key is smaller than the center element, then the function discards the second
half (the elements with larger values) of the array, and considers the lower half.

These steps continue until either the index is found or it is impossible to find a match.
Fig. 15.1 is a graphical view of the steps:

FIGURE 15.1: In each step, the binary search reduces the number of elements to search
across by half. In the first step, key is compared with the element at the center. If key is
smaller, then it is impossible to find key in the upper half of the array. If key is greater
than the element at the center, then it is impossible to find key in the lower half of the
array. The array must have been sorted before performing a binary search.

// binarysearch.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <time.h>4

#include <string.h>5

#define RANGE 1006

int * arrGen(int size);7

// generate a sorted array of integers8

s ta t i c int binarySearchHelp(int * arr , int low ,9

int high , int key)10

{11

i f (low > high)12

{13

return -1;14

}15

int ind = (low + high) / 2;16

i f (arr[ind] == key)17

{18

return ind;19

}20

i f (arr[ind] > key)21

{22

return binarySearchHelp(arr , low , ind - 1, key);23

}24

return binarySearchHelp(arr , ind + 1, high , key);25

}26

int binarySearch(int * arr , int len , int key)27

{28

return binarySearchHelp(arr , 0, len - 1, key);29

}30

void printArray(int * arr , int len);31

int main(int argc , char * * argv)32

Programming Problems Using Recursion 225

{33

i f (argc < 2)34

{35

printf("need a positive integer\n");36

return EXIT_FAILURE;37

}38

int num = strtol(argv[1], NULL , 10);39

i f (num <= 0)40

{41

printf("need a positive integer\n");42

return EXIT_FAILURE;43

}44

int * arr = arrGen(num);45

printArray(arr , num);46

int count;47

for (count = 0; count < 10; count ++)48

{49

int key;50

i f ((count % 2) == 0)51

{52

key = arr[rand() % num];53

}54

e l se55

{56

key = rand() % 100000;57

}58

printf("search (%d), result = %d\n",59

key , binarySearch(arr , num , key));60

}61

free (arr);62

return EXIT_SUCCESS;63

}64

int * arrGen(int size)65

{66

i f (size <= 0)67

{68

return NULL;69

}70

int * arr = malloc(s i z eo f (int) * size);71

i f (arr == NULL)72

{73

return NULL;74

}75

srand(time(NULL)); // set the seed76

int ind;77

arr [0] = rand() % RANGE;78

for (ind = 1; ind < size; ind ++)79

{80

arr[ind] = arr[ind - 1] + (rand() % RANGE) + 1;81

}82

return arr;83

226 Intermediate C Programming

}84

void printArray(int * arr , int len)85

{86

int ind;87

for (ind = 0; ind < len; ind ++)88

{89

printf("%d ", arr[ind]);90

}91

printf("\n\n");92

}93

This program introduces the concept of helper functions. Helper functions are common in
recursion for organizing the arguments correctly. In this example, binarySearch has three
arguments; however, the recursive function requires four arguments. Instead of passing the
array’s length, two arguments indicate the contiguous part of the array that remains to be
searched. The range is expressed with the two arguments: low and high.

Please pay attention to how the range changes in recursive calls: The range must shrink
in each call. This ensures that the recursive call chain eventually reaches a terminating
condition. Line 16 uses integer division: If low + high is an odd number, then the remainder
is discarded because ind is an integer. Note carefully that line 23 uses ind - 1 for the new
high index. A common mistake is to use ind instead. This will cause a problem because
it does not guarantee that the range shrinks in recursive calls. For example, consider the
situation where the range has only one element. This occurs when low is the same as high.
Their average ind is also the same. If line 23 were to use ind, then the next recursive call
to the helper function would also have low equal to high. The arguments are unchanged
and the recursion will not end. Similarly, in line 25 the low index must be ind + 1 and
not ind. Another common mistake is using if (low >= high) for the condition at line
12. This is wrong when the array has only one element to check. This function returns −1
without checking whether or not that single element is the same as key.

The source listing above includes a function to generate test cases called arrGen. The
program calls binarySearch ten times. In five of the calls (when count is an even number
at line 51), key is an element of the array and therefore binarySearch should find key.
This program shows a strategy to test the program with known results.

15.2 Quick Sort

Section 9.2 explained how to use the qsort function. This section explains how quick
sort works. As previously mentioned, quick sort uses the concept of transitivity: If x > y

and y > z, then x > z. The algorithm first selects one element from the array: It does
not matter which one. This element is called the pivot. It can be any element in the array.
Some implementations use the first or last element; some implementations use a randomly
selected element. After selecting the pivot, the algorithm divides the array into three parts:
(i) elements smaller than the pivot, (ii) equal to the pivot, and (iii) greater than the pivot.
By dividing the elements into the three parts, the algorithm uses transitivity to avoid
unnecessary comparisons among elements. This algorithm is usually faster than other sorting
algorithms and is called “quick sort”. After dividing the elements into the three parts, the
algorithm then recursively sorts parts (i) and (iii). The program stops when all elements

Programming Problems Using Recursion 227

have been sorted. This occurs when each part has only one element or no element at all.
How does the algorithm divide the array into three parts? One solution uses these steps:

1. Determine the value of the pivot. In this example, the pivot is the first element.
2. Iterate through the original array from left (smaller indexes) to right (larger indexes)

using two indexes called low and high. The initial value of low is one higher than the
index of the pivot. The initial value of high is the largest index of the range being
considered.

3. From the left side, if an element is smaller than the pivot, low increments. If an
element is greater than the pivot, stop changing low.

4. From the right side, if an element is greater than the pivot, high decrements. If an
element is smaller than the pivot, stop changing high.

5. Now swap the elements whose indexes are low and high.
6. Continue steps 2 to 4 until low is greater than high.
7. Put the pivot between the two parts.
Note that by the last step, the array will be ordered such that all of the elements smaller

than the pivot are together, and all of the elements larger than pivot are also together. When
the pivot is placed, it is in the correct position for the final sorted array. The following figure
illustrates the procedure. The pivot is 19, low is 1, and high is 11.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 23 8 31 6 42 28 16 51 33
variable pivot low high

Because 7 is smaller than 19, low increments.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 23 8 31 6 42 28 16 51 33
variable pivot low high

The next value, 12, is also smaller than 19, and low increments again. The next value
is 23 and it is greater than 19. Thus, low stops incrementing.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 23 8 31 6 42 28 16 51 33
variable pivot low high

Following the algorithm, if the value whose index is high is greater than the pivot, then
decrement high. Since 33 is greater than 19, we must decrement high.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 23 8 31 6 42 28 16 51 33
variable pivot low high

Since 51 is also greater than 19, high decrements again.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 23 8 31 6 42 28 16 51 33
variable pivot low high

At this moment, the value whose index is low is greater than the pivot. The value whose
index is high is smaller than the pivot. Now we swap these two values.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 16 8 31 6 42 28 23 51 33
variable pivot low high

228 Intermediate C Programming

Continuing the algorithm, the value of low increases because 16 is smaller than 19.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 16 8 31 6 42 28 23 51 33
variable pivot low high

Because 8 is smaller than 19, low increments again.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 16 8 31 6 42 28 23 51 33
variable pivot low high

Because 31 is greater than 19, low stops here. Since 23 is greater than the pivot, high
decrements.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 16 8 31 6 42 28 23 51 33
variable pivot low high

The index high decrements twice more, and the value at high is 6.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 16 8 31 6 42 28 23 51 33
variable pivot low high

Now the values at low and high are swapped.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 19 7 12 16 8 6 31 42 28 23 51 33
variable pivot low high

If low increments, it will meet high. This means that the array has been divided into
three parts: (i) the first element, which is the pivot, (ii) the part that is smaller than the
pivot, and (iii) the part that is greater than the pivot.

Now the value at low and the pivot are swapped.

index 0 1 2 3 4 5 6 7 8 9 10 11
value 6 7 12 16 8 19 31 42 28 23 51 33
variable low high

The algorithm next sorts part (ii) using the same procedure.

index 0 1 2 3 4
value 6 7 12 16 8
variable pivot low high

The algorithm also sorts part (iii) using the same procedure.

index 6 7 8 9 10 11
value 31 42 28 23 51 33
variable pivot low high

A sample implementation of quick sort is shown below. The function quickSort takes
only two arguments: the array and its length. The recursive function needs three argu-
ments: the array and the range of indexes to be sorted. Thus, a helper function called
quickSortHelp is created. This helper function divides the array elements in the specified
range into three parts and recursively sorts the first and the third parts.

Programming Problems Using Recursion 229

// quicksort.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <time.h>4

#include <string.h>5

#define RANGE 100006

int * arrGen(int size);7

// generate a sorted array of integers8

void swap(int * a, int * b);9

s ta t i c void quickSortHelp(int * arr , int first , int last)10

{11

// [first , last]: range of valid indexes (not last - 1)12

i f (first >= last) // no need to sort one or no element13

{14

return;15

}16

#i f d e f DEBUG17

printf("first = %d, last = %d\n", first , last);18

#endif19

int pivot = arr[first];20

int low = first + 1;21

int high = last;22

while (low < high)23

{24

while ((low < last) && (arr[low] <= pivot))25

{26

// <= so that low will increment when arr[low]27

// is the same as pivot , using < will stop28

// incrementing low when arr[low] is the same29

// as pivot and the outer while loop will not stop30

low ++;31

}32

while ((first < high) && (arr[high] > pivot))33

{34

high --;35

}36

i f (low < high)37

{38

swap (& arr[low], & arr[high]);39

}40

}41

i f (pivot > arr[high])42

{43

swap(& arr[first], & arr[high]);44

}45

quickSortHelp(arr , first , high - 1);46

quickSortHelp(arr , low , last);47

}48

void quickSort(int * arr , int len)49

{50

quickSortHelp(arr , 0, len - 1);51

230 Intermediate C Programming

}52

void printArray(int * arr , int len);53

int main(int argc , char * * argv)54

{55

i f (argc < 2)56

{57

printf("need a positive integer\n");58

return EXIT_FAILURE;59

}60

i f (argc == 3)61

{62

srand(strtol(argv[2], NULL , 10));63

}64

e l se65

{66

srand(time(NULL)); // set the seed67

}68

int num = strtol(argv[1], NULL , 10);69

i f (num <= 0)70

{71

printf("need a positive integer\n");72

return EXIT_FAILURE;73

}74

int * arr = arrGen(num);75

printArray(arr , num);76

quickSort(arr , num);77

printArray(arr , num);78

free (arr);79

return EXIT_SUCCESS;80

}81

void swap(int * a, int * b)82

{83

int s = * a;84

* a = * b;85

* b = s;86

}87

int * arrGen(int size)88

{89

i f (size <= 0)90

{91

return NULL;92

}93

int * arr = malloc(s i z eo f (int) * size);94

i f (arr == NULL)95

{96

return NULL;97

}98

int ind;99

for (ind = 0; ind < size; ind ++)100

{101

arr[ind] = rand() % RANGE;102

Programming Problems Using Recursion 231

}103

return arr;104

}105

void printArray(int * arr , int len)106

{107

int ind;108

int sorted = 1;109

for (ind = 0; ind < len; ind ++)110

{111

#i f d e f DEBUG112

printf("%d ", arr[ind]);113

#endif114

i f ((ind > 0) && (arr[ind] < arr[ind -1]))115

{116

sorted = 0;117

}118

}119

printf("\nsorted = %d\n\n", sorted);120

}121

This implementation introduces a new way to debug. Lines 17 and 19 use #ifdef DEBUG

and #endif to enclose debugging code. If this program is compiled the normal way, the lines
between #ifdef DEBUG and #endif are skipped by the compiler. In other words, the line
(or lines) between #ifdef DEBUG and #endif has (or have) no effect. This is useful if the
program prints too many debugging messages. If you want to see the debugging messages,
compile the program in the following way:

$ gcc -g -Wall -Wshadow -DDEBUG quicksort.c -o quicksort

When adding -DDEBUG (it is -D followed by the symbol after #ifdef) after gcc, the
debugging messages are shown. This flag tells gcc to define the symbol DEBUG. You can
define other symbols by adding -D in front of the symbol after the gcc command. It is also
possible to add -DDEBUG to CFLAGS in Makefile.

You may have noticed that the function printArray also checks whether the array is
sorted. This is another debugging technique. Visually inspecting whether an array is sorted
is useful for an array with only a few elements. Instead of using visual inspection, the
program automatically determines whether or not the array is sorted. Making the program
check for its own correctness allows us to test quickSort and its helper function with an
array of thousands of elements.

Another debugging technique is to use argv[2] to set the seed of the random numbers.
To test the program, you probably want to use random numbers so that the tests can cover
different scenarios. However, we need some way to repeat the test if a problem is found, and
that means we must be able to control the sequence of random numbers. One solution is to
use a command-line argument. If this argument is present, the random number generator
is seeded correspondingly, and then the same sequence of numbers is generated. Without
giving this command-line argument, the seed is determined by the system clock, and the
sequence will almost certainly be different every time the program is run.

At first glance, this program may appear straightforward. A closer look, however, re-
veals that some common mistakes can easily occur. The helper function’s second and third
arguments specify the range of indexes that is being sorted. This function assumes last is
a valid index and quickSort thus must use len - 1. If line 51 uses len, then the program
may access an invalid memory location because len is not a valid index. As explained in

232 Intermediate C Programming

Section 7.2.2, sometimes accessing an invalid memory address does not seem to cause prob-
lems but the program is still wrong. If the program is compiled on different platforms, with
different compilers, or if it is run enough times, then at some stage it will fail. Running
valgrind is extraordinarily helpful in picking up these types of errors. If line 51 uses len,
then valgrind reports:

==8895== Invalid read of size 4

==8895== at 0x4007A0: quickSortHelp (quicksort.c:36)

The problem occurs when high is last. Please note that last can be len.
Now look at line 25, which uses arr[low] <= pivot. What happens if it is rewritten

as arr[low] < pivot? This small difference can cause problems when some of the array’s
elements have the same value as the pivot. When this occurs and line 25 has no =, then low

does not increment. If arr[high] is smaller than the pivot, then high does not decrement.
As a result, neither low nor high change and the program enters an infinite loop because
low < high is always true.

Some implementations of quick sort select random (not the first) array elements for the
pivots. Why? Quick sort can be fast due to transitivity. If the original array is already
sorted then quick sort is not faster because the first part (the part smaller than the pivot)
is empty, and the program does not take advantage of transitivity. Using a random element
in the array for the pivot reduces the chance when the pivot is always the smallest element
in the sorted array.

15.3 Permutations and Combinations

Permutations can be generated using recursion based on the following idea: Swap the
first item with any of the later locations, and then swap the second item with any of the
later locations, and so on. The following example should make this clearer:

A B C D

The first item, A, may appear in the first, second, third, or fourth column.

A
A

A
A

Every time A moves, it is swapped with the item originally at that column. The second
item, B, may also appear in the first, second, third, or fourth column. However, we need to
exclude putting B in the first column because A appears in the second column by swapping
A and B. Thus, B already has a chance to be moved to the first column and needs to be
moved to only the second (original location), third, and fourth columns.

B
B

B

Similarly, C may appear in the third or the fourth column.

Programming Problems Using Recursion 233

C
C

The following implementation generates all permutations of an array. It requires a
command-line argument to set the array length.

// permute.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

void printArray(int * arr , int length)5

{6

int ind;7

for (ind = 0; ind < length - 1; ind ++)8

{9

printf("%c ", arr[ind]);10

}11

printf("%c\n", arr[length - 1]);12

}13

void swap(int * a, int * b)14

{15

int s = * a;16

* a = * b;17

* b = s;18

}19

void permuteHelp(int * arr , int ind , int num)20

{21

i f (ind == num)22

{23

printArray(arr , ind);24

return;25

}26

int loc; // destination of arr[ind]27

for (loc = ind; loc < num; loc ++)28

{29

swap(& arr[ind], & arr[loc]);30

permuteHelp(arr , ind + 1, num);31

swap(& arr[ind], & arr[loc]); // swap back32

}33

}34

void permute(int * arr , int num)35

{36

permuteHelp(arr , 0, num);37

}38

int main(int argc , char * argv [])39

{40

i f (argc != 2)41

{42

return EXIT_FAILURE;43

}44

int num = (int) strtol(argv[1], NULL , 10);45

234 Intermediate C Programming

i f (num <= 0)46

{47

return EXIT_FAILURE;48

}49

int * arr;50

arr = malloc(s i z eo f (int) * num);51

int ind;52

for (ind = 0; ind < num; ind ++)53

{54

arr[ind] = ind + ’A’; // elements are ’A’, ’B’, ...55

}56

permute(arr , num);57

free (arr);58

return EXIT_SUCCESS;59

}60

Lines 28 to 33 are the core that generates the permutations. One way to understand
how this works is to check the number of iterations generated. When ind is 0, the loop
iterates num times. When ind is 1, the loop iterates num − 1 times. When ind is 2, the
loop iterates num − 2 times. Finally, when ind is num − 1, the loop iterates only once. This
program will iterate num × (num − 1) × (num - 2) ... 1 = num! times. This is the number
of permutations for num items. If all the lines are unique then they are guaranteed to be the
correct permutations.

You may be wondering why loc starts at ind, because when loc is ind, line 30,

swap(& arr[ind], & arr[loc]);1

has no effect. It is true that swapping an element with itself has no effect. However, this is the
way to keep this element at the original location. Without this line, the element will never
stay in the original location. For example, if A is the first element, and loc starts at ind + 1,
then A is always swapped away from the first location, and no generated permutation will
begin with A. As a result, the program will fail to generate all possible permutations.

A different approach can be used to generate combinations. Instead of permuting an
array storing the items, an array is used to store whether a particular item is selected or
not. For example, if arr[0] is 0, A is not selected. If arr[0] is 1, then A is selected. If
arr[2] is 0, then C is not selected. If arr[2] is 1, then C is selected. The helper function
requires five arguments:

1. arr is a binary array storing whether an element is selected or not.
2. ind is the index of the item being decided on whether it is selected.
3. num is the total number of items.
4. sel is the number of items to be selected.
5. sum is the number of items already selected.

// combine.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

void printArray(int * arr , int length)5

{6

int ind;7

for (ind = 0; ind < length; ind ++)8

{9

i f (arr[ind] == 1)10

Programming Problems Using Recursion 235

{11

printf("%c ", ind + ’A’);12

}13

}14

printf("\n");15

}16

void combineHelp(int * arr , int ind , int num ,17

int sel , int sum)18

{19

i f (sum == sel) // select enough items20

{21

printArray(arr , num);22

return;23

}24

i f (ind == num) // end of array , no more item to select25

{26

return;27

}28

// select this element29

arr[ind] = 1;30

combineHelp(arr , ind + 1, num , sel , sum + 1);31

// do not select this element32

arr[ind] = 0;33

combineHelp(arr , ind + 1, num , sel , sum);34

}35

void combine(int * arr , int num , int sel)36

{37

combineHelp(arr , 0, num , sel , 0);38

}39

int main(int argc , char * argv [])40

{41

i f (argc != 3) // need two numbers42

{43

return EXIT_FAILURE;44

}45

int num = (int) strtol(argv[1], NULL , 10);46

i f (num <= 0)47

{48

return EXIT_FAILURE;49

}50

int sel = (int) strtol(argv[2], NULL , 10);51

i f ((sel <= 0) || (sel > num))52

{53

return EXIT_FAILURE;54

}55

int * arr;56

arr = malloc(s i z eo f (int) * num);57

int ind;58

for (ind = 0; ind < num; ind ++)59

{60

arr[ind] = 0;61

236 Intermediate C Programming

}62

combine(arr , num , sel);63

free (arr);64

return EXIT_SUCCESS;65

}66

When sum equals sel, enough items have been selected and the selected items are
printed. When ind equals num, no more items are available for selection. Line 30 selects the
item and one is added to sum when recursively calling combineHelp. Line 33 “unselects” the
item and sum is unchanged in the recursive call. Either the item is selected or it is not. The
helper function recursively calls itself to determine whether to select the remaining items.
From the examples of permutations and combinations, you can see recursion is a natural
way of solving these problems. Recursion is a good approach when the solutions
have “branches”. In permutation, each element can be in one of many locations. After
setting one element to a particular location, the next element also can be in one of many
locations. By putting recursive calls inside a loop, the solution naturally solves permutations.
For combinations, each element may be selected or not and there are two branches. One
reason that makes recursion a better solution is that the number of iterations changes. For
both cases, the call stack keeps the values of the array indexes. The indexes indicate which
element to consider next. Without using recursion, programmers have to allocate memory
for keeping the values of the indexes.

15.4 Stack Sort

A stack can be used to sort a sequence of numbers, if the sequence satisfies some con-
ditions. What is a “stack”? A stack can store information based on the “first-in, last-out”
rule. The call stack is a stack that is used to control the flow of execution of a computer
program. Not every stack is a call stack. The “stack” in this section is unrelated to the call
stack described earlier. The stack sort algorithm is described as follows:

1. Create an empty stack.
2. Read one number from the sequence, call it x.
3. If the stack is empty, push the number x to the stack.
4. When the stack is not empty, we call the number at the top of the stack y.
5. If y <= x, pop y from the stack. Continue steps 4 and 5 until either the stack is empty

or top of the stack is greater x.
6. If y > x, then push x to the stack.
7. Repeat steps 2 to 6 until finishing the input sequence.
8. If the stack is not empty, then pop all remaining numbers from the stack.
9. The sequence of numbers popped from the stack is sorted if the input sequence is

“stack-sortable”. The definition is described further below.
Stack sort is a theoretically interesting algorithm, because it is fast—faster than quick

sort—but works only under particular circumstances. Those circumstances will be explained,
but first a few examples to illustrate how stack sort works.

15.4.1 Example 1

Consider the sequence <2, 1>. When 2 is read from the sequence, the stack is empty
and 2 is pushed on to the stack (step 3). Next, 1 is read from the sequence, 1 is smaller

Programming Problems Using Recursion 237

than the element on top of the stack, and is therefore pushed to the stack (step 6). Now the
sequence is finished and we pop the numbers from the stack (step 8) and the result is <1,
2>. Below is a graphical illustration of the steps. The first number, 2, is read and pushed
to the stack.

2

The second number, 1, is read and pushed to the stack.

1
2

The numbers are popped and the result is <1, 2>.

15.4.2 Example 2

The next example considers the sequence <1, 2>. The first number, 1, is read from the
sequence and pushed to the stack.

1

The second number, 2, is read. Since 1 is smaller than 2, 1 is popped from the stack and 2
is pushed on to the stack.

2

The numbers are popped and the result is <1, 2>.

15.4.3 Example 3

The third example is the sequence <1, 3, 2>. The first number, 1, is read from the
sequence and pushed on to the stack.

1

The second number, 3, is read. Since 1 is smaller than 3, 1 is popped from the stack and 3
is pushed on to the stack.

3

The third number, 2, is read. Since 2 is smaller than 3, 2 is pushed to the stack.

2
3

The numbers are popped and the result is <1, 2, 3>.

238 Intermediate C Programming

15.4.4 Example 4

In the fourth example we consider the sequence <2, 3, 1>. The first number, 2, is read
and pushed on to the stack.

2

The second number, 3, is read. Since 2 is smaller than 3, 2 is popped from the stack and 3
is pushed on to the stack.

3

The third number, 1, is read. Since 1 is smaller than 3, 1 is pushed on to the stack.

1
3

The numbers are popped and the result is <2, 1, 3>.
There is a problem: The popped sequence is not sorted. Stack sort can sort some se-

quences of numbers but fails to sort the others. Is there a way to determine whether a
sequence of numbers is “stack sortable”?

15.4.5 Stack Sortable

Let M be the largest value of the whole sequence. Without loss of generality, a sequence
of numbers can be divided into three parts: A before M , M , and B after M . It is possible
that the first or third parts (or both) are empty. If M is the first number in the sequence,
then A is empty. If M is the last number in the sequence, then B is empty.

A: before M M B: after M

Step 5 of the algorithm pops all the numbers in the stack when M is read. Suppose MA

is the largest value in A. All the values must obey MA < M , because M is the largest value.
Suppose mB is the smallest value in B. When M is pushed to the stack, every number in A
must have already been popped. If mB < MA, mB should be popped before MA is popped.
However, when M is pushed, MA has already been popped and there is no chance for mB

to be popped before MA is popped. As a result, stack sort fails for this sequence. In the last
example, <2, 3, 1>, M is 3, MA is 2, and mB is 1. The condition mB < MA is satisfied so
<2, 3, 1> is not stack sortable.

Is this sequence <1, 5, 2, 3, 5, 4> stack sortable? Note that the largest value 5 appears
twice in this sequence. Following the procedure described earlier, the first number is pushed
to the stack.

1

The next number 5 is larger than 1 so 1 is popped and 5 is pushed.

5

The third number 2 is smaller than 5 and it is pushed.

Programming Problems Using Recursion 239

2
5

The next number is 3 so 2 is popped from the stack and 3 is pushed.

3
5

The next number is 5 so 3 is popped and 5 is pushed.

5
5

The last number 4 is pushed.

4
5
5

Finally, all numbers are popped and the output sequence is 1, 2, 3, 4, 5, 5. It is sorted.
Thus, <1, 5, 2, 3, 5, 4> is stack sortable.

If the same largest value M (5 in this example) appears multiple times, which M should
be chosen for breaking the sequence into A, M , and B? Should it be the first M , the second
M , the last one, or will any one do? The answer is the first M because we compare only the
smallest element in B and do not care about the largest element in B. If we choose an M
other than the first, then the first M is in A and the sequence would never be considered
stack sortable, which is a mistake.

After breaking the sequence into the three parts, the same procedure is applied recur-
sively to A and B to determine whether in turn they are stack sortable. The algorithm for
checking stack sortable is described as follows:

1. An empty sequence is stack sortable. This is a base case.
2. Find the largest value in the sequence. If this value appears multiple times in the

array, select the first one.
3. Divide the sequence into three parts.
4. If both A and B are empty, then the sequence is stack sortable. The sequence has

only one element. This is another base case.
5. If A is empty (B must not be empty), then jump to step 9.
6. If B is empty (A must not be empty), then jump to step 8.
7. Since neither A nor B is empty, find MA and mB. If MA > mB, then the sequence is

not stack sortable. This is another base case.
8. Recursively check whether A is stack sortable.
9. Recursively check whether B is stack sortable.
The following implementation checks whether a sequence is stack sortable. We have used

the permutation program to generate all possible test cases.

// stacksort.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

int findIndex(int * arr , int first , int last , int maxmin)5

// find the index of the largest or smallest element6

// the range is expressed by the indexes [first , last]7

// maxmin = 1: find largest , maxmin = 0: find smallest8

240 Intermediate C Programming

{9

int ind;10

int answer = first;11

for (ind = first + 1; ind <= last; ind ++)12

{13

i f (((maxmin == 1) && (arr[answer] < arr[ind])) ||14

((maxmin == 0) && (arr[answer] > arr[ind])))15

{16

answer = ind;17

}18

}19

return answer;20

}21

int findMaxIndex(int * arr , int first , int last)22

{23

return findIndex(arr , first , last , 1);24

}25

int findMinIndex(int * arr , int first , int last)26

{27

return findIndex(arr , first , last , 0);28

}29

int isStackSortable(int * arr , int first , int last)30

// check whether the range of the array is sortable31

// return 1 if the range of the array is sortable32

// return 0 if the range of the array is not sortable33

{34

i f (first >= last) // no or one element is stack sortable35

{36

return 1;37

}38

int maxIndex = findMaxIndex(arr , first , last);39

// consider the four cases40

// both A and B are empty41

// The array has only one element , it is stack sortable42

// already checked earlier43

44

// A is empty , B is not empty45

// check whether B is stack sortable46

i f (first == maxIndex)47

{48

return isStackSortable(arr , first + 1, last);49

}50

// A is not empty , B is empty51

// check whether A is stack sortable52

i f (maxIndex == last)53

{54

return isStackSortable(arr , first , last - 1);55

}56

// neither is empty57

int maxAIndex = findMaxIndex(arr , first , maxIndex - 1);58

int minBIndex = findMinIndex(arr , maxIndex + 1, last);59

Programming Problems Using Recursion 241

i f (arr[maxAIndex] > arr[minBIndex])60

{61

return 0; // not stack sortable62

}63

int sortA = isStackSortable(arr , first , maxIndex - 1);64

int sortB = isStackSortable(arr , maxIndex + 1, last);65

return (sortA && sortB); // return 1 only if both are 166

}67

void printArray(int * arr , int length)68

{69

i f (isStackSortable(arr , 0, length - 1) == 0)70

{71

return;72

}73

int ind;74

for (ind = 0; ind < length - 1; ind ++)75

{76

printf("%d", arr[ind]);77

}78

printf("%d\n", arr[length - 1]);79

}80

void swap(int * a, int * b)81

{82

int s = * a;83

* a = * b;84

* b = s;85

}86

void permuteHelp(int * arr , int ind , int num)87

{88

i f (ind == num)89

{90

printArray(arr , ind);91

return;92

}93

int loc; // destination of arr[ind]94

for (loc = ind; loc < num; loc ++)95

{96

swap(& arr[ind], & arr[loc]);97

permuteHelp(arr , ind + 1, num);98

swap(& arr[ind], & arr[loc]); // swap back99

}100

}101

void permute(int * arr , int num)102

{103

permuteHelp(arr , 0, num);104

}105

int main(int argc , char * argv [])106

{107

i f (argc != 2)108

{109

return EXIT_FAILURE;110

242 Intermediate C Programming

}111

int num = (int) strtol(argv[1], NULL , 10);112

i f (num <= 0)113

{114

return EXIT_FAILURE;115

}116

int * arr;117

arr = malloc(s i z eo f (int) * num);118

int ind;119

for (ind = 0; ind < num; ind ++)120

{121

arr[ind] = ind + 1;122

}123

permute(arr , num);124

free (arr);125

return EXIT_SUCCESS;126

}127

For an array of n distinct numbers, there are n! permutations. Among them, 1
n+1C

2n
n

are stack sortable. This is called the Catalan number. The proof will be given later in this
book.

15.5 Tracing a Recursive Function

This problem asks you to understand a program with a recursive function. Please solve
the problem without running the program in a computer. What is the output of this pro-
gram?

// trace1.c1

#include <stdio.h>2

#include <stdlib.h>3

int func(int n, int * count)4

{5

(* count) ++;6

i f ((n == 0) || (n == 1))7

{8

return 1;9

}10

int val = 0;11

int a = func(n - 1, count);12

int b = func(n / 2, count);13

val += a + b;14

return val;15

}16

int main(int argc , char * * argv)17

{18

int count = 0;19

int val = 4;20

int fv = func(val , & count);21

Programming Problems Using Recursion 243

printf("f(%d) = %d, count = %d\n", val , fv , count);22

return EXIT_SUCCESS;23

}24

The program prints two values at line 22: fv and count. Their values can be computed
independently. Fig. 15.2 shows one way of computing both using an approach similar to
that shown in Section 14.2.

FIGURE 15.2: Determine the values of fv and count using a graphical illustration of the
calling relations.

The value of fv is 5. The value of count increments every time func is called. The figure
shows that both func and count are called 9 times.

This is a “top-down” approach to computing func. To compute func(4), the program
calls func(3). To compute func(3), func(2) is called. Computing func(4) calls func(2)

three times and each time that happens it needs to call func(1) + func(1). This is inef-
ficient. It would be more efficient if the program remembers the values of func(2) so that
it does not need to be recomputed. The following implementation shows a different way of
computing func. It is a “bottom-up” approach: func(2) and func(3) are computed before
computing func(4). This is more efficient because the program remembers the value of
func(2), and therefore does not need to recompute it.

// bottomup.c1

#include <stdio.h>2

#include <stdlib.h>3

int func(int n)4

{5

int * arr;6

// need n + 1 for arr[n]7

arr = malloc(s i z eo f (int) * (n + 1));8

arr[0] = 1;9

arr[1] = 1;10

int ind;11

for (ind = 2; ind <= n; ind ++)12

{13

arr[ind] = arr[ind - 1] + arr[ind / 2];14

}15

int val = arr[n];16

free (arr);17

return val;18

}19

244 Intermediate C Programming

int main(int argc , char * * argv)20

{21

int val = 4;22

int fv = func(val);23

printf("f(%d) = %d\n", val , fv);24

return EXIT_SUCCESS;25

}26

Some people mistakenly believe that recursion is slow. This is not true. The problem
is not recursion. The problem is redundant computation: func(2) is recomputed multiple
times. Recursion is fast when it is used correctly. Binary search and quick sort are two
examples. Some problems, such as integer partition, permutations, and combinations can
be solved naturally with recursion. Recursion is particularly helpful when the solution has
some symmetry with smaller solutions. This is indeed the case with all our recursive ex-
amples. Solving these types of problems using for or while loops is more difficult. In each
case working out the required number of iterations is non-obvious, and the implementation
details would be quite complicated. What makes recursion simple is that it is possible to
assume that the simpler cases are already solved. It is only necessary to figure out how to
express a solution in terms of smaller solutions, and then, so long as the base cases are
correct, the whole thing will work. This book puts great emphasis on recursion not because
recursion is always a good strategy, but because recursion is an excellent approach for solv-
ing certain classes of problems. Attempting to solve these problems with other techniques
can be difficult. If you understand recursion, then you can use it when recursion is a good
approach.

15.6 A Recursive Function with a Mistake

Consider the following incorrect implementation of binary search. One line in
binarysearch is incorrect, as marked by a comment. What is the output of this program?

// searchbug.c1

#include <stdio.h>2

#include <stdlib.h>3

int binarySearch(int * arr , int key , int len);4

#define ARRAYSIZE 105

int main(int argc , char * * argv)6

{7

int arr[ARRAYSIZE] = {1, 12, 23, 44, 65,8

76, 77, 98, 109, 110};9

int ind;10

for (ind = 0; ind < ARRAYSIZE; ind ++)11

{12

printf("%d\n", binarySearch(arr , arr[ind],13

ARRAYSIZE));14

}15

return EXIT_SUCCESS;16

}17

18

int binarySearchHelp(int * arr , int key , int low , int high)19

Programming Problems Using Recursion 245

{20

i f (low >= high) /* ERROR: should be >, not >= */21

{22

return -1;23

}24

int mid = (low + high) / 2;25

i f (arr[mid] == key)26

{27

return mid;28

}29

i f (arr[mid] > key)30

{31

return binarySearchHelp(arr , key , low , mid - 1);32

}33

return binarySearchHelp(arr , key , mid + 1, high);34

}35

36

int binarySearch(int * arr , int key , int len)37

{38

return binarySearchHelp(arr , key , 0, len - 1);39

}40

The program searches the array’s elements one by one. If binarySearchHelp were cor-
rect, the program would print:

0

1

2

3

4

5

6

7

8

9

When searching for 1, the arguments low and high change as shown in the following:

low high mid arr[mid] key
0 9 4 65 1
0 3 1 12 1
0 0 0 1 1

The problem occurs when low and high are both zero and binarySearchHelp re-
turns −1 without checking whether arr[mid] is the same as key. Does this mistake cause
binarySearchHelp to always return −1? Consider searching for 12:

low high mid arr[mid] key
0 9 4 65 12
0 3 1 12 12

The function correctly returns 1. What will the function return when searching for 23?

246 Intermediate C Programming

low high mid arr[mid] key
0 9 4 65 23
0 3 1 12 23
2 3 2 23 23

The function correctly returns 2. The program’s output is:

-1

1

2

-1

4

5

-1

7

8

-1

As you can see, this program sometimes produces correct results and sometimes produces
incorrect results. This program has a 60% chance of producing correct results. This reinforces
the need to have a strategy for testing. It is usually important to automate testing so that
you can test many cases easily. A common mistake among beginning programmers is that
they test several cases and then believe their programs are correct.

Part III

Structure

247

This page intentionally left blankThis page intentionally left blank

Chapter 16

Programmer-Defined Data Types

16.1 Struct and Object . 249
16.2 Passing Objects as Arguments . 253
16.3 Objects and Pointers . 256

16.3.1 Returning an Object . 258
16.3.2 Objects and malloc . 258

16.4 Constructors and Destructors . 261
16.5 Structures within Structures . 267
16.6 Binary Files and Objects . 270

Section 7.1.2 mentioned several reasons for creating header files (.h files), including defining
constants using #define, declaring functions, and defining new data types—usually referred
to as “types”. This chapter explains how to define new types using structures. First let us
consider what makes up a type by thinking about the differences between int and double.
A type specifies:
• The format for the data. For example, integers and double-precision floating-point

numbers are represented differently in the computer’s memory.
• The range of possible values, and the size required to store the data. A 4-byte integer

stores valid values that are between the range of −2,147,483,648 (−231, approximately
−109) and 2,147,483,647 (231− 1). In contrast, the absolute value of a double-precision
floating number (8 bytes) can be as small as 10−308 and as large as 10308 (approxi-
mately).
• The effect of operations on the data. Because the two types have different formats,

when a program has a statement a + b, the actual operations depend on whether a

and b are integers or floating-point numbers. Also, some operations are restricted to
certain data types. For example, switch must be used with an integer; double cannot
be used in switch statements.

C also supports other data types, such as char and float. C does not have a separate
type for strings; instead, C uses null-terminated arrays of char for strings, as explained in
Chapter 6. A natural question is whether C allows programmers to create new types. The
answer is yes.

Why would programmers want to create new types? The most obvious reason is to put
related data together. For example, a college student has a name (string), year (integer),
grade point average (floating-point), and so on. C programmers would have to do something
awkward if C did not allow the creation of new types. For example, separate arrays could
be created to store the students’ data: an array of strings for student names, an array of
integers for years, an array of floating-point numbers for scores, etc. There is no good way
to associate the elements in different arrays. There is no good way to ensure that the arrays
have the same numbers of elements. Therefore, supporting programmer-defined types is
essential.

249

250 Intermediate C Programming

16.1 Struct and Object

When multiple pieces of data are organized together, it is a structure. A structure is a
type (similar to int or char). After creating the structure, the type can be used to create
an object (borrowing a term from C++ and Java). An object is a specific instance of a type.
For example, “bicycle” is a type describing the properties: two wheels, gears, etc. A given
bicycle is an instance that has these properties. Borrowing another term used in C++ and
Java, we call each piece of data an attribute. For a bicycle, the wheel size is an attribute.
The brand is another attribute. These three terms are further described below:
• Structure: a data type so that multiple pieces of data can be organized together. The

piece may have different types (int, char, or even other structures).
• Object: a specific instance of a structure. In the example below, int and t are both

types. Suppose t is a structure. Using these types, x is a specific instance of integer,
and y is a specific instance of type t.

int x;1

t y;2

• Attribute: A structure organizes different pieces of data together. Each piece of data
is referred to as an attribute. The attributes store the information specific to the
particular object. The attributes’ values of different objects are likely different.

It is important to clearly distinguish these three concepts (structure, object, and at-
tribute). Here are some more examples:

1. “Person” can be a structure. Individual people are specific instances of Person. Let’s
call two specific people: “Alice” and “Bob”. Their names, age, height, and phone
numbers are attributes. The attributes of “Alice” are different from those of “Bob”.
They have the same attributes, but those attributes have different values, and are
stored in different locations in memory.

2. “Car” is a structure. Every car has some attributes, such as year, brand, and color.
Your car is a particular instance and it is an object. That means it has a particular
year, brand, and color that can be different from my car.

3. “Desk” is a structure. Every desk has attributes, such as width, height, number of
drawers, weight, material, etc. The desk in your office is an instance. It is a particular
desk with specific values for those attributes that can be different from the desk at
your home.

Here is another way to think about the relationship between structure and object: A
structure describes what attributes (age, height, color, etc.) an object has. An object has
specific values for those attributes that can be distinguished from any other object of the
same structure. Furthermore, an object is stored in memory somewhere. A structure has no
values for its attributes, it is not stored in memory.

Now that we know what structures, objects, and attributes are, how do we create them?
Below is an example that creates a new type for vectors. A vector has three components:
x, y, and z. It is desirable to create a new type called Vector and put these attributes
together. Programmers often create new structure types by using typedef struct. The
structure’s name is given at the end of the structure, after } and before ;.

// vector.h1

#ifndef VECTOR_H2

#define VECTOR_H3

typedef struct4

{5

Programmer-Defined Data Types 251

int x;6

int y;7

int z;8

} Vector; /* don’t forget ; */9

#endif10

The type begins with typedef struct, which tells gcc that a new type is defined here.
This type contains multiple attributes and they form a structure. After the closing brace,
Vector is the name of the new type. Remember to add the semicolon after the name. This
book adopts the naming convention of using a capital letter to start the name of a structure.
It is common to have only one structure in each header file and the file’s name is the same as
the structure’s name, but in lowercase. Thus, the structure Vector is defined in the header
file vector.h.

In the following program, v1 is a Vector object. This object has three attributes. To
access an attribute, a period is needed after v1, such as v1.x and v1.y.

// vector.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

int main(int argc , char * argv [])6

{7

Vector v1;8

v1.x = 3;9

v1.y = 6;10

v1.z = -2;11

printf("The vector is (%d, %d, %d).\n",12

v1.x, v1.y, v1.z);13

return EXIT_SUCCESS;14

}15

The program’s output is shown below:

The vector is (3, 6, -2).

What does line 8 actually do? It creates an object on the call stack.

Symbol Address Value
v1.z 108 garbage
v1.y 104 garbage
v1.x 100 garbage

The type Vector requires three integers and the call stack stores those three integers.
Each attribute occupies 4 bytes (assuming that sizeof(int) is 4). The attributes are not
initialized and the values are garbage. Line 9 changes the value at address 100 to 3.

Symbol Address Value
v1.z 108 garbage
v1.y 104 garbage
v1.x 100 garbage → 3

A Vector object can be copied to another Vector object, as the following example
illustrates:

252 Intermediate C Programming

// vector2.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

int main(int argc , char * argv [])6

{7

Vector v1;8

v1.x = 3;9

v1.y = 6;10

v1.z = -2;11

printf("The vector is (%d, %d, %d).\n",12

v1.x, v1.y, v1.z);13

Vector v2 = {0};14

printf("The vector is (%d, %d, %d).\n",15

v2.x, v2.y, v2.z);16

v2 = v1;17

printf("The vector is (%d, %d, %d).\n",18

v2.x, v2.y, v2.z);19

v1.x = -4;20

v2.y = 5;21

printf("The vector is (%d, %d, %d).\n",22

v1.x, v1.y, v1.z);23

printf("The vector is (%d, %d, %d).\n",24

v2.x, v2.y, v2.z);25

return EXIT_SUCCESS;26

}27

The program’s output is:

The vector is (3, 6, -2).

The vector is (0, 0, 0).

The vector is (3, 6, -2).

The vector is (-4, 6, -2).

The vector is (3, 5, -2).

Line 14 creates a Vector object and initializes every attribute to zero. Please remember
that C does not initialize the attributes for you. Attributes must be initialized explicitly.
Line 17 copies v1’s attributes to v2’s attributes. The attributes are copied from v1 to v2

one by one. The call stack is shown below:

Symbol Address Value
v2.z 120 −2
v2.y 116 6
v2.x 112 3
v1.z 108 −2
v1.y 104 6
v1.x 100 3

Since v1 and v2 occupy different addresses in the call stack, changing the attributes of
v1 does not affect the attributes of v2 and vice versa. Line 20 changes v1.x; line 21 changes
v2.y. The effects are limited to the corresponding addresses.

Programmer-Defined Data Types 253

Symbol Address Value
v2.z 120 −2
v2.y 116 6 → 5
v2.x 112 3
v1.z 108 −2
v1.y 104 6
v1.x 100 3 → −4

As a result, lines 19 and 20 print different values.
Even though Vector is a type and assignment = is supported, the type does not have

all the properties of built-in types (int, char, double, etc.). For example, we cannot use
== or != to compare two Vector objects:

Vector v1;1

Vector v2;2

v1.x = 1;3

v1.y = 2;4

v1.z = 3;5

v2.x = 0;6

v2.y = -1;7

v2.z = -2;8

9

i f (v1 != v2)10

{11

printf("v1 and v2 are different .\n");12

}13

When compiling this function, gcc will say:

invalid operands to binary !=

If we want to compare two Vector objects, we have to write a function that compares
the attributes, for example,

#include "vector.h"1

int equalVector(Vector v1, Vector v2)2

// return 0 if any attribute is different3

// return 1 if all attributes are equal4

{5

i f (v1.x != v2.x) { return 0; }6

i f (v1.y != v2.y) { return 0; }7

i f (v1.z != v2.z) { return 0; }8

return 1;9

}10

The following section explains how to pass objects as function arguments.

16.2 Passing Objects as Arguments

A Vector object can be passed as a function argument. When passing an object as an
argument, all attributes are copied to the argument of the called function. This is the same

254 Intermediate C Programming

as when passing other types of arguments, such as int and double: A copy of the argument
is passed. The following example shows a separate function for printing Vector objects:

// vector3.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

void printVector(Vector v)6

{7

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);8

}9

10

int main(int argc , char * argv [])11

{12

Vector v1;13

v1.x = 3;14

v1.y = 6;15

v1.z = -2;16

printVector(v1);17

return EXIT_SUCCESS;18

}19

Frame Symbol Address Value

printVector

v.z 124 −2
v.y 120 6
v.x 116 3
return location 112 line 18

main
v1.z 108 −2
v1.y 104 6
v1.x 100 3

How do we know that the attributes are copied? In the following program changeVector

changes the Vector object passed to it. However, inside main, the attributes of v1 are
unchanged.

// vector4.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

void printVector(Vector v)6

{7

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);8

}9

10

void changeVector(Vector v)11

{12

v.x = 5;13

v.y = -3;14

v.z = 7;15

printVector(v);16

Programmer-Defined Data Types 255

}17

18

int main(int argc , char * argv [])19

{20

Vector v1;21

v1.x = 3;22

v1.y = 6;23

v1.z = -2;24

printVector(v1);25

changeVector(v1);26

printVector(v1);27

return EXIT_SUCCESS;28

}29

The output of this program is:

The vector is (3, 6, -2).

The vector is (5, -3, 7).

The vector is (3, 6, -2).

What really happens when a function’s argument is an object? This can be explained
by showing the call stack before calling changeVector:

Frame Symbol Address Value

main
v1.z 108 −2
v1.y 104 6
v1.x 100 3

Calling changeVector pushes a new frame to the call stack. The argument is an object
that has three attributes. The values are copied from the calling function into the new
frame.

Frame Symbol Address Value

changeVector

v.z 124 −2
v.y 120 6
v.x 116 3
return location 112 line 27

main
v1.z 108 −2
v1.y 104 6
v1.x 100 3

The function changeVector changes the attributes of the object in its own frame.

Frame Symbol Address Value

changeVector

v.z 124 7
v.y 120 −3
v.x 116 5
return location 112 line 27

main
v1.z 108 −2
v1.y 104 6
v1.x 100 3

When changeVector finishes, the frame is popped and the program resumes at main.
The call stack is shown below:

256 Intermediate C Programming

Frame Symbol Address Value

main
v1.z 108 −2
v1.y 104 6
v1.x 100 3

Note that the attributes of v1 are unchanged.

16.3 Objects and Pointers

Is it possible to change an object’s attributes inside a function and keep the changes
even after the function returns? The answer is yes. To do this, we need to use pointers.

// vectorptr.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

void printVector(Vector v)6

{7

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);8

}9

10

void changeVector(Vector * p)11

{12

p -> x = 5;13

p -> y = -3;14

p -> z = 7;15

printVector (* p);16

}17

18

int main(int argc , char * argv [])19

{20

Vector v1;21

v1.x = 3;22

v1.y = 6;23

v1.z = -2;24

printVector(v1);25

changeVector (& v1);26

printVector(v1);27

return EXIT_SUCCESS;28

}29

At line 11 changeVector’s argument is a pointer:

void changeVector(Vector * p)11

This means that p is a pointer in the frame of the function changeVector. If you refer
back to Table 4.1, this is the first way of using *. When calling changeVector at line 26,
main must provide the address of a Vector object, i.e., & v1. This is best understood by
showing the call stack:

Programmer-Defined Data Types 257

Frame Symbol Address Value

changeVector
p 116 100
return location 112 line 27

main
v1.z 108 −2
v1.y 104 6
v1.x 100 3

Instead of copying the whole object, attribute by attribute, the argument p stores only
the address of the object v1. This is the address of the first attribute.

What is the -> symbol inside changeVector? The -> symbol takes the value at the
address, and then gets the attribute as if applying a . to a structure. Pointers are used with
structures often and C has this special syntax. It is equivalent to saying:

p -> x13

is the same as

(*p).x13

This dereferences p first, and then applies . for x. Dereferencing is the second way of using
* as explained in Table 4.1. Note that this means -> can only be used on a pointer to a
structure. It is illegal to use it in any other circumstance. If -> is at the left hand side (LHS)
of an assignment, then the attribute is modified (i.e., written). If -> is at the right hand
side (RHS) of an assignment, then the attribute is read. The statement,

p -> x = 5;13

changes the value at address 100.

Frame Symbol Address Value

changeVector
p 116 100
return location 112 line 27

main
v1.z 108 −2
v1.y 104 6
v1.x 100 3 → 5

p -> y = -3;14

changes the value at address 104.

Frame Symbol Address Value

changeVector
p 116 100
return location 112 line 27

main
v1.z 108 −2
v1.y 104 6 → -3
v1.x 100 5

Why do we need to add * in front of p when changeVector calls printVector? In
changeVector, p is a pointer. However, printVector expects an object because there is
no * in the line:

void printVector(Vector v)6

In changeVector, adding * in front of p dereferences the pointer, as explained in
Table 4.1. Thus, the object stored at addresses 100–108 is copied to the argument of
printVector. How do we know that the object is copied? In C, arguments are always copied
when passed to functions. If the argument were Vector *, then a copy of the pointer would

258 Intermediate C Programming

be passed. There is no * after Vector in printVector and the argument is an object. As
a result, the object is copied. If v’s attributes are changed inside printVector, then the
changes will be lost when the function finishes. The syntax for using objects is:
• If p’s value is an address of an object, use p -> x. It is allowed to put a space before

or after -> but no space can be added between - and >.
• If v is an object (not an address), use v.x.

16.3.1 Returning an Object

Can a function return a Vector object? Yes. The following example shows a constructor
function that creates and initializes a new object:

// vector5.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

Vector Vector_construct(int a, int b, int c)6

{7

Vector v;8

v.x = a;9

v.y = b;10

v.z = c;11

return v;12

}13

14

void Vector_print(Vector v)15

{16

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);17

}18

19

int main(int argc , char * argv [])20

{21

Vector v1 = Vector_construct (3, 6, -2);22

Vector_print(v1);23

return EXIT_SUCCESS;24

}25

What is the advantage of creating constructor functions? One good reason is that they
make programs easier to read. The three arguments remind programmers that a Vector

object has three attributes. Constructors should guarantee that all attributes are always
initialized. Uninitialized variables can make your programs behave in surprising ways. Before
calling the constructor, v1 is already on the call stack in the frame of the main function.
When the constructor returns the object, the attributes of v are copied to v1’s attributes
one by one. Then, the constructor’s frame is popped and v does not exist any more.

16.3.2 Objects and malloc

Is it possible to create an object that exists in heap memory, instead of stack memory?
Yes. Here is how to do it:

// vectormalloc.c1

Programmer-Defined Data Types 259

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

Vector * Vector_construct(int a, int b, int c)6

// notice *7

{8

Vector * v;9

v = malloc(s i z eo f (Vector));10

i f (v == NULL) // allocation fail11

{12

printf("malloc fail\n");13

return NULL;14

}15

v -> x = a;16

v -> y = b;17

v -> z = c;18

return v;19

}20

void Vector_destruct(Vector * v)21

{22

free (v);23

}24

void Vector_print(Vector * v)25

{26

printf("The vector is (%d, %d, %d).\n",27

v -> x, v -> y, v -> z);28

}29

int main(int argc , char * argv [])30

{31

Vector * v1;32

v1 = Vector_construct (3, 6, -2);33

i f (v1 == NULL)34

{35

return EXIT_FAILURE;36

}37

Vector_print(v1);38

Vector_destruct(v1);39

return EXIT_SUCCESS;40

}41

The program declares a Vector pointer at line 35. It will be given an address in heap
memory returned by Vector construct. Before calling Vector construct, the call stack
only has a frame for the main function:

Frame Symbol Address Value
main v1 100 garbage

Calling Vector construct pushes a frame on to the stack:

260 Intermediate C Programming

Frame Symbol Address Value

Vector construct

v 124 garbage
c 120 −2
b 116 6
a 112 3
value address 108 100
return location 104 line 37

main v1 100 garbage

Calling malloc allocates a piece of memory that is in the heap. The size is sufficient to
accommodate three integers. Suppose malloc returns 60000. Then the call stack becomes:

Frame Symbol Address Value

Vector construct

v 124 60000
c 120 −2
b 116 6
a 112 3
value address 108 100
return location 104 line 37

main v1 100 garbage

The heap memory is shown below:

Address Value
60008 garbage
60004 garbage
60000 garbage

The pointer’s value takes on the address returned by calling malloc. Since it is a pointer,
the program uses -> to access the attributes. The statement,

v -> x = a;16

v -> y = b;17

v -> z = c;18

modifies the values at addresses 60000, 60004, and 60008 to 3, 6, and −2 respectively. The
heap memory is changed to:

Address Value
60008 garbage → −2
60004 garbage → 6
60000 garbage → 3

When Vector construct returns, v’s value is written to the return address 100. There-
fore, the call stack becomes:

Frame Symbol Address Value
main v1 100 60000

Note that, as always, the memory allocated on heap must be released by calling free.
This is the purpose of the destructor Vector destruct.

Programmer-Defined Data Types 261

16.4 Constructors and Destructors

Sometimes objects need to contain pointers that manage dynamically allocated memory.
Consider the following example:

// person.h1

#ifndef PERSON_H2

#define PERSON_H3

typedef struct4

{5

int year;6

int month;7

int date;8

char * name;9

} Person;10

Person * Person_construct(int y, int m, int d, char * n);11

void Person_destruct(Person * p);12

void Person_print(Person * p);13

#endif14

Each Person object has four attributes, three for the date of birth and one for the name.
The name is a pointer because the length of a person’s name is unknown. If the name is
created with a fixed length, this attribute must use the longest possible name and waste
memory when a name is shorter. It is more efficient allocating the length of the name as
needed. This is the constructor:

#include "person.h"1

#include <stdio.h>2

#include <string.h>3

#include <stdlib.h>4

Person * Person_construct(int y, int m, int d, char * n)5

{6

Person * p = NULL;7

p = malloc(s i z eo f (Person));8

i f (p == NULL) // malloc fail9

{10

return NULL;11

}12

p -> year = y;13

p -> month = m;14

p -> date = d;15

p -> name = malloc(s i z eo f (char) * (strlen(n) + 1));16

// + 1 for the ending character ’\0’17

i f ((p -> name) == NULL) // malloc fail18

{19

free (p);20

return NULL;21

}22

strcpy(p -> name , n);23

return p;24

}25

262 Intermediate C Programming

Notice how the constructor initializes the attributes in the same order as they are de-
clared in the header file. This is a good programming habit. For the sake of clarity, make
things as consistent as possible. This habit prevents accidentally forgetting to initialize an
attribute. Below is the destructor:

#include "person.h"1

#include <stdlib.h>2

void Person_destruct(Person * p)3

{4

// p -> name must be freed before p is freed5

free (p -> name);6

free (p);7

}8

Note that the destructor releases memory in the reverse order that the construc-
tor allocates memory. This is a general rule. If the destructor free (p) precedes
free (p -> name), then the program will have problems. Why? After free (p), the
object is no longer valid, and free (p -> name) is meaningless and dangerous. Af-
ter calling free (p), the program cannot access the memory that contains the pointer
free (p -> name). There is no guarantee that the address is still accessible. If the destruc-
tor does not call free (p -> name), then the program leaks memory. Thus, as a general
rule, the destructor releases memory in the reverse order that the constructor allocates
memory. Please remember that every malloc must have a corresponding free.

Below is the implementation of the Person print function:

#include "person.h"1

#include <stdio.h>2

void Person_print(Person * p)3

{4

printf("Name: %s. ", p -> name);5

printf("Date of Birth: %d/%d/%d\n",6

p -> year , p -> month , p -> date);7

}8

The following is an example of using the constructor and the destructor:

#include <stdio.h>1

#include <stdlib.h>2

#include <string.h>3

#include "person.h"4

5

int main(int argc , char * argv [])6

{7

Person * p1 = Person_construct (1989, 8, 21, "Amy");8

Person * p2 = Person_construct (1991, 2, 17, "Bob");9

Person_print(p1);10

Person_print(p2);11

Person_destruct(p1);12

Person_destruct(p2);13

return EXIT_SUCCESS;14

}15

Some students struggle with the difference between objects and pointers to objects. A
pointer stores a memory address. Consider the following example. Please notice how p2 is
created.

Programmer-Defined Data Types 263

#include <stdio.h>1

#include <stdlib.h>2

#include <string.h>3

#include "person.h"4

5

void Person_print(Person * p);6

int main(int argc , char * argv [])7

{8

Person * p1 = Person_construct (1989, 8, 21, "Amy");9

Person * p2 = p1;10

Person_print(p1);11

Person_print(p2);12

Person_destruct(p1);13

Person_destruct(p2);14

return EXIT_SUCCESS;15

}16

There is no syntax error in this program, but it contains a critical mistake. If we run this
program, it will likely crash. The problem reveals itself in Person destruct as reported by
valgrind:

==9344== Invalid read of size 8

==9344== at 0x400770: Person_destruct (persondestruct.c:6)

==9344== by 0x40069F: main (person2.c:14)

==9344== Address 0x51f2050 is 16 bytes inside a block of size 24 free’d

==9344== at 0x4C2A739: free

(in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==9344== by 0x400787: Person_destruct (persondestruct.c:7)

==9344== by 0x400693: main (person2.c:13)

What is wrong? To understand the problem, we need to understand what the assignment
means. After the main function finishes line 9, this is what is in the call stack and heap
memory:

Frame Symbol Address Value
main p1 100 60000

Symbol Address Value
p1 -> name[3] 70003 ’\0’
p1 -> name[2] 70002 ’y’
p1 -> name[1] 70001 ’m’
p1 -> name[0] 70000 ’A’
p1 -> name 60012 70000
p1 -> date 60008 21
p1 -> month 60004 8
p1 -> year 60000 1989

Line 10 assigns p1’s value to p2:

Frame Symbol Address Value

main
p2 104 60000
p1 100 60000

Both p1 and p2 point to the same memory address 60000. Line 13 calls the destructor
and releases the heap memory. This is perfectly correct. Line 14 calls the destructor again
but the memory has already been released. The same heap memory cannot be released

264 Intermediate C Programming

twice. Assigning p1 to p2 at line 10 merely copies the pointer, and the two different pointers
store the same memory address 60000.

Can the problem be solved by simply not calling the destructor for p2? Yes, but it
depends on the intention of the program. When p1 and p2 have the same value, changing
p1 -> name[0] (the first letter of the name) will also change p2 -> name[0]. However, in
the following code:

int x = 5;1

int y = x;2

x = 12;3

What is the value of y? Should it be 5 or 12? Experience tells us that y should be 5. This
is correct because x and y occupy different memory addresses. Even though p1 and p2

have different addresses (100 and 104), they store the same value, 60000. Thus changing
p1 -> name[0] also changes p2 -> name[0]. In the next example, both p1 and p2 have
distinct values generated by calling Person construct. Will the following program work?

#include <stdio.h>1

#include <stdlib.h>2

#include <string.h>3

#include "person.h"4

int main(int argc , char * argv [])5

{6

Person * p1 = Person_construct (1989, 8, 21, "Amy");7

Person * p2 = Person_construct (1991, 2, 17, "Bob");8

p2 = p1;9

Person_print(p1);10

Person_print(p2);11

Person_destruct(p1);12

Person_destruct(p2);13

return EXIT_SUCCESS;14

}15

This is the call stack and the heap memory after line 9:

Frame Symbol Address Value

main
p2 104 80000
p1 100 60000

Symbol Address Value
p2 -> name[3] 85003 ’\0’
p2 -> name[2] 85002 ’b’
p2 -> name[1] 85001 ’o’
p2 -> name[0] 85000 ’B’
p2 -> name 80012 85000
p2 -> date 80008 17
p2 -> month 80004 2
p2 -> year 80000 1991
p1 -> name[3] 70003 ’\0’
p1 -> name[2] 70002 ’y’
p1 -> name[1] 70001 ’m’
p1 -> name[0] 70000 ’A’
p1 -> name 60012 70000
p1 -> date 60008 21
p1 -> month 60004 8
p1 -> year 60000 1989

Programmer-Defined Data Types 265

Does this program work? No, valgrind still reports problems in Person destruct. Line
10 still copies p1’s value to p2 and both are 60000. This also causes a memory leak because
the memory at 80000 and 85000 is no longer accessible.

Consider another scenario when the objects are not accessed through pointers:

#include <stdio.h>1

#include <stdlib.h>2

#include <string.h>3

#include "person.h"4

int main(int argc , char * argv [])5

{6

Person p1;7

Person p2;8

p1.year = 1989;9

p1.month = 8;10

p1.date = 21;11

p1.name = strdup("Amy");12

p2.year = 1991;13

p2.month = 2;14

p2.date = 17;15

p2.name = strdup("Bob");16

17

Person_print (& p1);18

Person_print (& p2);19

free (p1.name);20

free (p2.name);21

return EXIT_SUCCESS;22

}23

The program uses strdup to copy strings. In this program, both p1 and p2 are objects
on the call stack:

Frame Symbol Address Value

main

p2.name 128 85000
p2.date 124 17
p2.month 120 2
p2.year 116 1991
p1.name 112 70000
p1.date 108 21
p1.month 104 8
p1.year 100 1989

Symbol Address Value
p2.name[3] 85003 ’\0’
p2.name[2] 85002 ’b’
p2.name[1] 85001 ’o’
p2.name[0] 85000 ’B’
p1.name[3] 70003 ’\0’
p1.name[2] 70002 ’y’
p1.name[1] 70001 ’m’
p1.name[0] 70000 ’A’

What will happen if the program has this line?

p2 = p1;17

The assignment = copies one object’s attributes to another object’s attributes. After exe-
cuting this line, the call stack and heap will appear as follows:

266 Intermediate C Programming

Frame Symbol Address Value

main

p2.name 128 70000
p2.date 124 21
p2.month 120 8
p2.year 116 1989
p1.name 112 70000
p1.date 108 21
p1.month 104 8
p1.year 100 1989

Symbol Address Value
p2.name[3] 85003 ’\0’
p2.name[2] 85002 ’b’
p2.name[1] 85001 ’o’
p2.name[0] 85000 ’B’
p1.name[3] 70003 ’\0’
p1.name[2] 70002 ’y’
p1.name[1] 70001 ’m’
p1.name[0] 70000 ’A’

Now, p1.name and p2.name have the same value (70000). The heap memory originally
pointed to by p2.name is still in the heap but is no longer accessible because p2.name is
no longer 85000. This causes memory leak. Moreover, lines 20 and 21 free the same heap
memory at 70000 twice. As you can see, if an object’s attribute is a pointer, we need to
be very careful about how memory is allocated and freed. If we are not careful, then the
program may leak memory or release the same memory twice, or both.

Are there general rules for handling objects that have attributes which are pointers?
Fortunately, there are. When an object’s attribute is a pointer, that usually indicates the
need for four functions.
• constructor: allocates memory for the attribute and assigns the value to the attribute.
• destructor: releases memory for the attribute.
• copy constructor replacing =: by creating a new object from an existing object. This is

sometimes referred to as cloning. The new object’s attribute points to heap memory
allocated by calling malloc.
• assignment replacing =: modifying an object that has already been created by using the

constructor or the copy constructor. Since the object has already been constructed,
the object’s attribute stores the address of a heap memory. This memory must be
released before allocating new memory.

The first two functions have already been given above. The other two functions are
shown below:

#include <stdio.h>1

#include <stdlib.h>2

#include <string.h>3

#include "person.h"4

Person * Person_copy(Person * p);5

// create a new object by copying the attributes of p6

Person * Person_assign(Person * p1 , Person * p2);7

// p1 is already a Person object , make its attribute8

// the same as p2’s attributes (deep copy)9

Person * Person_copy(Person * p)10

{11

return Person_construct(p -> year , p -> month ,12

p -> date , p -> name);13

}14

Person * Person_assign(Person * p1 , Person * p2)15

{16

free(p1 -> name);17

p1 -> year = p2 -> year;18

p1 -> month = p2 -> month;19

p1 -> date = p2 -> date;20

Programmer-Defined Data Types 267

p1 -> name = strdup(p2 -> name);21

return p1;22

}23

int main(int argc , char * argv [])24

{25

Person * p1 = Person_construct (1989, 8, 21, "Amy");26

Person * p2 = Person_construct (1991, 2, 17, "Jennifer");27

Person * p3 = Person_copy(p1); // create p328

Person_print(p1);29

Person_print(p2);30

Person_print(p3);31

p3 = Person_assign(p3 , p2);32

Person_print(p3);33

Person_destruct(p1);34

Person_destruct(p2);35

Person_destruct(p3);36

return EXIT_SUCCESS;37

}38

What is the difference between Person copy and Person assign? Person copy creates
a new Person object by allocating memory. Person assign has to release memory for
existing attributes before copying the attributes.

The copy constructor allocates separate memory space so that changing one object later
does not affect the other. This is called a deep copy. The assignment function has to do
more work, because the object already occupies memory. In our example, the original name
in p3 is “Amy”. When p2 is copied to p3, p3 -> name does not have enough memory for
the longer name “Jennifer”. Thus, the assignment function first releases the memory for
p3 -> name and then allocates memory again by later calling strdup.

The assignment function can check whether p3 -> name has enough memory. If
p3 -> name has enough memory, it is unnecessary to release p3 -> name and allocate
memory again. Note that this would require an if statement and a call of strlen. This can
marginally complicate the program. If the new name is longer, it is still necessary to free and
allocate memory. Some beginner programmers want to optimize their code. However, it is
often difficult for even experienced programmers to know what is slowing down a program.
You should avoid making this type of unnecessary complication without first profiling the
code using gprof. This is a very important principle to follow.

Whereas a deep copy allocates memory so that objects do not share memory, a shallow
copy allows several objects’ attributes to point to the same memory addresses. Shallow
copies can be useful in some cases. For example, in a student database, every student has an
attribute that points to an object representing the school. It is unnecessary for every student
to have an individual copy of the school’s object. There can be one school object shared by
every student object. In this scenario sharing makes sense, and the copy constructor and
assignment operator should perform a shallow copy of the school attribute. Another reason
for using shallow copies is when objects share a very large piece of memory and few objects
actually need to modify this shared memory. A copy is made only when an object intends
to make changes. This is called copy on write and is beyond the scope of this book.

268 Intermediate C Programming

16.5 Structures within Structures

Can a structure’s attribute be another structure? Yes. In this example, we move a
Person’s date of birth from three integers into one Date object:

// dateofbirth.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

typedef struct5

{6

int year;7

int month;8

int date;9

} DateOfBirth;10

DateOfBirth DateOfBirth_construct(int y, int m, int d)11

{12

DateOfBirth dob;13

dob.year = y;14

dob.month = m;15

dob.date = d;16

return dob;17

}18

void DateOfBirth_print(DateOfBirth d)19

{20

printf("Date of Birth: %d/%d/%d\n",21

d.year , d.month , d.date);22

}23

typedef struct24

{25

char * name;26

DateOfBirth dob;27

} Person;28

Person * Person_construct(char * n, int y, int m, int d);29

void Person_destruct(Person * p);30

// create a new object by copying the attributes of p31

Person * Person_copy(Person * p);32

// p1 is already an object , make its attribute the33

// same as p2’s attributes34

Person * Person_assign(Person * p1 , Person * p2);35

void Person_print(Person * p);36

int main(int argc , char * argv [])37

{38

Person * p1 = Person_construct("Amy", 1989, 8, 21);39

Person * p2 = Person_construct("Jennifer", 1991, 2, 17);40

Person * p3 = Person_copy(p1); // create p341

Person_print(p1);42

Person_print(p2);43

Person_print(p3);44

p3 = Person_assign(p3 , p2); // change p345

Programmer-Defined Data Types 269

Person_print(p3);46

Person_destruct(p1);47

Person_destruct(p2);48

Person_destruct(p3);49

return EXIT_SUCCESS;50

}51

Person * Person_construct(char * n, int y, int m, int d)52

{53

Person * p;54

p = malloc(s i z eo f (Person));55

i f (p == NULL)56

{57

printf("malloc fail\n");58

return NULL;59

}60

p -> name = malloc(s i z eo f (char) * (strlen(n) + 1));61

// + 1 for the ending character ’\0’62

strcpy(p -> name , n);63

p -> dob = DateOfBirth_construct(y, m, d);64

return p;65

}66

void Person_destruct(Person * p)67

{68

// p must be released after p -> name has been released69

free (p -> name);70

free (p);71

}72

Person * Person_copy(Person * p)73

{74

return Person_construct(p -> name , p -> dob.year ,75

p -> dob.month , p -> dob.date);76

}77

Person * Person_assign(Person * p1 , Person * p2)78

{79

free(p1 -> name);80

81

p1 -> dob = p2 -> dob;82

p1 -> name = strdup(p2 -> name);83

84

return p1;85

}86

void Person_print(Person * p)87

{88

printf("Name: %s. ", p -> name);89

DateOfBirth_print(p -> dob);90

}91

This program creates a hierarchy of structures. Then, Person construct calls
DateOfBirth construct. Person print calls DateOfBirth print. What is the advantage
of this approach? As programs become more complex, such a hierarchy becomes helpful
for organization. Creating one structure that contains everything can be impractical and

270 Intermediate C Programming

unclear. Instead, we should put related data together and create a structure, for example,
the DateOfBirth structure. We can use this structure inside other structures.

Each structure should have a constructor to initialize all attributes. If a structure has
pointers for dynamically allocated memory, then make sure that there is also a destructor.
If deep copy is required (true in most cases), remember to write a copy constructor and an
assignment function.

16.6 Binary Files and Objects

This section explains how to write an object to a file and how to read an object from a file.
This section will talk about both text files and binary files. Vector is used as the structure
for the examples in this section. The following program contains two write functions and
two read functions. Vector writet and Vector readt use text files. Vector writeb and
Vector readb use binary files.

When using text files, reading and writing objects is as simple as reading and writing one
attribute after another. The two functions must process the attributes in the same order. If
the orders are different, then the results will be wrong.

Vector writeb and Vector readb open files in the binary mode by adding b in the
second argument when calling fopen. Some operating systems, including Linux, actually
ignore b. It is used primarily for compatibility among different systems. Table 16.1 describes
the differences of text and binary files:

Operation Text File Binary File
open a file fopen fopen
write fprintf fwrite
read fgetc, fgets, or fscanf fread

TABLE 16.1: Functions for opening, writing to, and reading from text and binary files.

// vectorfile.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "vector.h"5

Vector Vector_construct(int a, int b, int c)6

{7

Vector v;8

v.x = a;9

v.y = b;10

v.z = c;11

return v;12

}13

void Vector_print(char * name , Vector v)14

{15

printf("%s is (%d, %d, %d).\n", name , v.x, v.y, v.z);16

}17

void Vector_writet(char * filename , Vector v)18

Programmer-Defined Data Types 271

// writet means write to a text file19

{20

FILE * fptr;21

fptr = fopen(filename , "w");22

i f (fptr == NULL)23

{24

printf("Vector_writet fopen fail\n");25

return;26

}27

fprintf(fptr , "%d %d %d", v.x, v.y, v.z);28

fclose (fptr);29

}30

Vector Vector_readt(char * filename)31

// readt means read from a text file32

{33

Vector v = Vector_construct (0, 0, 0);34

FILE * fptr;35

fptr = fopen(filename , "r");36

i f (fptr == NULL)37

{38

printf("Vector_readt fopen fail\n");39

return v;40

}41

i f (fscanf(fptr , "%d %d %d", & v.x, & v.y, & v.z) != 3)42

{43

printf("fprintf fail\n");44

}45

fclose (fptr);46

return v;47

}48

void Vector_writeb(char * filename , Vector v)49

// writeb means write to a binary file50

{51

FILE * fptr;52

fptr = fopen(filename , "w"); // "w" same as "wb" in Linux53

i f (fptr == NULL)54

{55

printf("Vector_writeb fopen fail\n");56

return;57

}58

i f (fwrite (& v, s i z eo f (Vector), 1, fptr) != 1)59

{60

printf("fwrite fail\n");61

}62

fclose (fptr);63

}64

Vector Vector_readb(char * filename)65

// readb means read from a binary file66

{67

FILE * fptr;68

Vector v; // not initialized69

272 Intermediate C Programming

fptr = fopen(filename , "r"); // "r" same as "rb" in Linux70

i f (fptr == NULL)71

{72

printf("Vector_readb fopen fail\n");73

return v;74

}75

i f (fread(& v, s i z eo f (Vector), 1, fptr) != 1)76

{77

printf("fread fail\n");78

}79

return v;80

}81

int main(int argc , char * argv [])82

{83

Vector v1 = Vector_construct (13, 206, -549);84

Vector v2 = Vector_construct (-15, 8762, 1897);85

Vector_print("v1", v1);86

Vector_print("v2", v2);87

printf("===============================\n");88

Vector_writet("vectort.dat", v1);89

v2 = Vector_readt("vectort.dat");90

Vector_print("v1", v1);91

Vector_print("v2", v2);92

93

v1 = Vector_construct (2089, -3357, 1234);94

v2 = Vector_construct (7658, 0, 1876);95

printf("===============================\n");96

Vector_print("v1", v1);97

Vector_print("v2", v2);98

99

Vector_writeb("vectorb.dat", v1);100

v2 = Vector_readb("vectorb.dat");101

printf("===============================\n");102

Vector_print("v1", v1);103

Vector_print("v2", v2);104

return EXIT_SUCCESS;105

}106

To write binary data, fwrite is used. This function requires four arguments:
1. The address of the object. If it is an object (not a pointer), & needs to be added before

the object.
2. The size of the object. It can be obtained by using sizeof to find the size of the

object or data. For this example, the size of a Vector object is sizeof(Vector).
3. The number of objects to write. This example writes only one object so the value

is 1. If a program is writing an array of objects, then this argument is the number of
elements in the array.

4. The FILE pointer.
The return value of fwrite is the number of objects written. This number can be

different from the third argument because, for example, the disk may be full and only some
elements are written. It is a good programming habit to check whether the return value is
the same as the third argument. The data written by fwrite needs to be read by fread,

Programmer-Defined Data Types 273

not fscanf. Four arguments are required for fread and the order of the arguments is the
same as that for fwrite.

What are advantages and disadvantages of text and binary files? If data are stored in a
text file, then it can be read by using the more command in terminal or simply viewing it
in your favorite text editor. Vector readt and Vector writet must handle the attributes
one by one. The order in Vector writet must be the same as the order in Vector readt. If
one more attribute is added to Vector (for example, t for time), then both Vector readt

and Vector writet must be changed. These requirements increase the chances of mistakes:
It is easy to change one place and forget to change the other. In contrast, Vector writeb

and Vector readb automatically handle the order of attributes. If an attribute is added
to Vector, there is no need to change Vector readb and Vector writeb because sizeof

reflects the new size. The disadvantage of using binary files is that they cannot be edited
and viewed directly. The data files are also specific to the platform the code is compiled on,
since the size and format of the binary data can vary between computers.

This page intentionally left blankThis page intentionally left blank

Chapter 17

Programming Problems Using Structure

17.1 Sorting a Person Database . 275
17.2 Packing Decimal Digits . 281

17.2.1 Number Systems . 281
17.2.2 Packing Two Decimal Digits into One Byte . 282
17.2.3 Bit Operations . 283
17.2.4 Inserting and Retrieving Decimal Digits . 285
17.2.5 DecPack Program . 286

17.3 Binary File and Pointer . 290

17.1 Sorting a Person Database

In this problem we sort a database of people. Each person is an object that has two
attributes: name and age. The program sorts the people by ages or by names. To test the
program, we use the 200 popular given names. The names are randomly ordered by using
the Linux command sort with -R. The age of a person is a random number between 1 and
100. The database is a text file containing two columns: age and name. A few lines of the
database are shown below:

43 Peter

87 Linda

57 Gregory

61 Larry

5 Eric

19 Dennis

56 Betty

70 Joshua

4 Donald

60 Susan

To test the program, we need to compare the answers of our program against the correct
answers. We can use the Linux program sort to generate the correct answers. The correct
answers are generated as follows:
• sort -n: sort the first column and treat the column as numbers. Without -n, the first

column will be treated as strings and “10” is before “9” because 1 is before 9 in the
dictionary.
• sort -k 2: sort by the second column.
This program uses the same Person structure defined earlier. Another structure is de-

fined to store an array of pointers to Person objects. This structure also has an attribute
as the number of pointers in the array. The program needs to implement the follow steps:

1. Read Person objects from a file.

275

276 Intermediate C Programming

2. Write Person objects to a file.
3. Sort Person objects by names.
4. Sort Person objects by ages.
5. Release memory occupied by the objects.
6. Close opened files.

Below is the header file:

// person.h1

#ifndef PERSON_H2

#define PERSON_H3

typedef struct4

{5

int age;6

char * name;7

} Person;8

typedef struct9

{10

int number; // number of persons11

Person * * person; // array of pointers to Person objects12

} PersonDatabase;13

// read person database from a file14

// person is an array of pointers to person objects15

// The function returns the pointer of a database or NULL16

// The function returns NULL if reading from the file fails17

PersonDatabase * Person_read(char * filename);18

void Person_sortByName(PersonDatabase * perdb);19

void Person_sortByAge(PersonDatabase * perdb);20

// save the database in a file21

// return 0 if fail22

// return 1 if succeed23

int Person_write(char * filename , PersonDatabase * perdb);24

// write to computer screen25

void Person_print(PersonDatabase * perdb);26

// release the memory of the database27

void Person_destruct(PersonDatabase * perdb);28

#endif29

Here are implementations of these functions:

// person.c1

#include "person.h"2

#include <stdio.h>3

#include <string.h>4

#include <stdlib.h>5

PersonDatabase * Person_read(char * filename)6

{7

FILE * fptr = fopen(filename , "r");8

i f (fptr == NULL)9

{10

return NULL;11

}12

PersonDatabase * perdb = malloc(s i z eo f (PersonDatabase));13

i f (perdb == NULL)14

Programming Problems Using Structure 277

{15

fclose (fptr);16

return NULL;17

}18

// count the number of people in the file19

// use the longest name for the size of the buffer20

int numPerson = 0;21

int longestName = 0; // length of buffer to read names22

while (! feof(fptr))23

{24

int age;25

// find a line that contains a number (age)26

i f (fscanf(fptr , "%d", & age) == 1)27

{28

numPerson ++;29

// the remaning characters are the name30

int nameLength = 0;31

while ((! feof (fptr)) && (fgetc(fptr) != ’\n’))32

{33

nameLength ++;34

}35

nameLength ++; // for ’\n’36

i f (longestName < nameLength)37

{38

longestName = nameLength;39

}40

}41

}42

// the number of person is known now43

perdb -> number = numPerson;44

perdb -> person = malloc(s i z eo f (Person *) * numPerson);45

// allocate a buffer to read the names46

char * name = malloc(s i z eo f (char) * longestName);47

int ind = 0;48

// read the file again and store the data in the database49

// return to the beginning of the file50

fseek (fptr , 0, SEEK_SET);51

while (! feof(fptr))52

{53

int age;54

i f (fscanf(fptr , "%d", & age) == 1)55

{56

// remove the space separating age and name57

fgetc(fptr);58

fgets(name , longestName , fptr);59

// remove ’\n’60

char * chptr = strchr(name , ’\n’);61

i f (chptr != NULL) // last line may not have ’\n’62

{63

* chptr = ’\0’;64

}65

278 Intermediate C Programming

perdb -> person[ind] = malloc(s i z eo f (Person));66

perdb -> person[ind] -> age = age;67

// strdup calls malloc68

perdb -> person[ind] -> name = strdup(name);69

ind ++;70

}71

}72

free (name);73

fclose (fptr);74

return perdb;75

}76

s ta t i c void Person_writeHelp(FILE * fptr ,77

PersonDatabase * perdb)78

{79

int ind;80

for (ind = 0; ind < perdb -> number; ind ++)81

{82

// write one person per line83

fprintf(fptr , "%d %s\n",84

perdb -> person[ind] -> age ,85

perdb -> person[ind] -> name);86

}87

}88

void Person_print(PersonDatabase * perdb)89

{90

printf("---------------------------------------\n");91

// stdout is a built -in FILE *92

// stdout means the output is sent to the computer screen93

// not a file on the disk94

Person_writeHelp(stdout , perdb);95

}96

int Person_write(char * filename , PersonDatabase * perdb)97

{98

i f (perdb == NULL)99

{100

// nothing in the database101

return 0;102

}103

FILE * fptr = fopen(filename , "w");104

i f (fptr == NULL)105

{106

// cannot open the file107

return 0;108

}109

Person_writeHelp(fptr , perdb);110

fclose (fptr);111

return 1;112

}113

s ta t i c int comparebyName(const void * p1 ,114

const void * p2)115

{116

Programming Problems Using Structure 279

// get addresses of the array elements117

const Person * * pp1 = (const Person * *) p1;118

const Person * * pp2 = (const Person * *) p2;119

// get the elements120

const Person const * pv1 = * pp1;121

const Person const * pv2 = * pp2;122

// compare the attributes123

return strcmp ((pv1 -> name), (pv2 -> name));124

}125

void Person_sortByName(PersonDatabase * perdb)126

{127

qsort(perdb -> person , perdb -> number ,128

s i z eo f (Person *), comparebyName);129

}130

s ta t i c int comparebyAge(const void * p1 ,131

const void * p2)132

{133

const Person * * pp1 = (const Person * *) p1;134

const Person * * pp2 = (const Person * *) p2;135

const Person * pv1 = * pp1;136

const Person * pv2 = * pp2;137

return ((pv1 -> age) - (pv2 -> age));138

}139

void Person_sortByAge(PersonDatabase * perdb)140

{141

qsort(perdb -> person , perdb -> number ,142

s i z eo f (Person *), comparebyAge);143

}144

void Person_destruct(PersonDatabase * perdb)145

{146

int ind;147

for (ind = 0; ind < perdb -> number; ind ++)148

{149

free (perdb -> person[ind] -> name);150

free (perdb -> person[ind]);151

}152

free (perdb -> person);153

free (perdb);154

}155

This is the main function:

// main.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <string.h>4

#include "person.h"5

int main(int argc , char * argv [])6

{7

// argv [1]: name of input file8

// argv [2]: name of output file (sort by name)9

// argv [3]: name of output file (sort by age)10

280 Intermediate C Programming

i f (argc < 4)11

{12

return EXIT_FAILURE;13

}14

PersonDatabase * perdb = Person_read(argv [1]);15

i f (perdb == NULL)16

{17

return EXIT_FAILURE;18

}19

// Person_print(perdb);20

Person_sortByName(perdb);21

// Person_print(perdb);22

i f (Person_write(argv[2], perdb) == 0)23

{24

Person_destruct(perdb);25

return EXIT_FAILURE;26

}27

Person_sortByAge(perdb);28

// Person_print(perdb);29

i f (Person_write(argv[3], perdb) == 0)30

{31

Person_destruct(perdb);32

return EXIT_FAILURE;33

}34

Person_destruct(perdb);35

return EXIT_SUCCESS;36

}37

The example introduces a new way to debug a program. The intended output should
be a file on a disk. The sorted Person database can be printed to the computer screen
by using a pre-defined FILE pointer called stdout. It means “standard output”. You do
not (and cannot) fopen this pre-defined pointer. It already exists whenever any program
runs. Writing to stdout is precisely what printf does. So you have already been using
stdout since your first C program. The functions Person print and Person write both
call Person writeHelp, which writes the database to a file. Passing stdout means that the
database is written to the terminal.

This is an example of the DRY (Don’t Repeat Yourself) principle. Here we reuse the
same code for saving the data to a file and for printing the same data to the computer screen.
If something is wrong with Person writeHelp or the format of the data needs changes, then
you only need to make changes in one place. This saves a lot of time and reduces the chance
of mistakes. The DRY principle is a characteristic of well written code.

The program calls qsort, passing the array of Person * pointers—each element of the
array is a pointer to a Person object. Therefore, each item’s size is sizeof(Person *). The
two comparison functions, comparebyName and comparebyAge, need some careful thought.
Each argument is the address of an array element. Each element, in turn, is a pointer to a
Person object, i.e., Person *. Thus, the arguments to the comparison functions are pointers
to Person *, i.e., Person * *. A pointer stores a memory address. One of those * simply
means it is a pointer. The rest, Person *, is what is being pointed to. The two arguments
pp1 and pp2 in the comparison functions are Person * *. Inside each function pv1 and
pv2 are the pointers to Person objects, i.e., Person *. Please notice that * has different
meanings in the following statement:

Programming Problems Using Structure 281

const Person const * pv1 = * pp1;1

Table 4.1 summarizes the different ways of using *. In this statement, the first * means that
pv1 is a pointer. The second * means dereferencing pp1. Dereferencing a pointer means
going to the address stored in pp1, and retrieving the value stored at that address. Since
pp1 is the address of another pointer (pp1 is the address of an address), pp1’s value is also
an address; * pp1 is a pointer and this address is assigned to pv1. For pv1, the names
and ages are obtained by using pv1 -> name and pv1 -> age. Please read this program
carefully and fully understand the reasons and the purposes for each *.

17.2 Packing Decimal Digits

17.2.1 Number Systems

The minimum unit of information in a computer is called a bit. One bit can have two
possible values: 0 or 1. A sequence of bits can be used to represent a binary number, a
number in base 2. This is a binary system. We usually think of numbers in base ten, a
decimal system. In base ten we form numbers with ten different values: 0, 1, 2, 3, 4, 5, 6,
7, 8, 9. What does 2783 mean in the decimal system? Two thousands + seven hundreds +
eight tens + three:

2× 103 + 7× 102 + 8× 10 + 3× 100 (17.1)

How does this relate to the binary systems? The number binary 10110 means:

1× 24 + 1× 22 + 1× 21 + 0× 20 (17.2)

Another commonly used number system is the hexadecimal system. Hexadecimal num-
bers are in base sixteen, and thus require sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F. What does EA29 mean in the hexadecimal system? It means

E× 163 + A× 162 + 2× 161 + 9× 160 (17.3)

In C programs, hexadecimal numbers start with 0x (or 0X), for example, 0xAC, 0x9B, and
0x15. Sixteen is the fourth power of two and one hexadecimal digit can express a binary
number that is four bits long. A decimal number requires four bits. Table 17.1 shows the
relationships between the three different number systems.

In general, if a number system is base n, n symbols are allowed: zero, one, two, ..., n−1.
A number amam−1am−2...a1a0 means

am × nm + am−1 × nm−1 + am−2 × nm−2 + ... + a1 × n1 + a0 × n0 (17.4)

How to convert between number systems? If a decimal number is 273, what is the binary
representation? 273 = 256 + 16 + 1 = 28 + 24 + 1. Therefore, 273d = 100010001b. Here,
the subscripts d and b indicate the numbers are decimal and binary respectively.

In C programs, the minimum size of a variable is one byte (8 bits) and its type is
unsigned char. The valid decimal values for unsigned char are 0 through 255, inclusively.
It is not possible to have a one-bit variable in C programs. Also, C does not allow for the
expression of binary numbers. For example, 10100110b is expressed as 0xA6 and 11001011b
is expressed as 0xCB. Binary numbers may be used with gcc by prefixing 0b. For example,

282 Intermediate C Programming

Decimal Binary Hexadecimal
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11
18 10010 12
19 10011 13

TABLE 17.1: Different number systems.

0b1010 is the number 10. This is an extension to normal C, and may not work in other
compilers. Instead, binary numbers should be expressed as hexadecimal numbers.

17.2.2 Packing Two Decimal Digits into One Byte

ASCII uses 8 bits (i.e., one byte) to store characters. This is inefficient if only decimal
digits (0, 1, 2, ..., 9) are needed. Only 4 bits are necessary for storing a single decimal digit.
This problem asks you to implement a structure called DecPack, which packs two decimal
digits into one single byte (unsigned char). Each DecPack object has three attributes:
• size: the maximum number of decimal digits that can be stored in a DecPack object.
• used: the actual number of decimal digits that are stored in a DecPack object.
• data: an array of unsigned char. Each element stores two decimal digits. The upper

(i.e., left) 4 bits stores one decimal digit and the lower (i.e., right) 4 bits stores another
decimal digit. If the attribute size is an even number, the size of the array should
be size / 2. If the attribute size is an odd number, the size of the array should
be (size + 1) / 2.

The following diagram shows a graphical view of a byte in the DecPack data structure.
Each byte contains two decimal digits:

upper (left) 4 bits lower (right) 4 bits

When inserting a decimal digit using DecPack insert, the function checks whether data
is full. If it is full, then the size of the data array doubles. The old array is copied to the
new array and the memory for the old array is released. If a byte has not been used, then
the decimal digit uses the upper 4 bits. If the upper 4 bits of a byte are already used, the
decimal digit uses the lower 4 bits. When deleting a decimal digit using DecPack delete,
the function modifies used and returns the most recently inserted decimal digit. The digit’s

Programming Problems Using Structure 283

value must be between 0 and 9 (not ’0’ to ’9’). DecPack delete does not shrink the data

array even if used is zero. The DecPack print function prints the decimal digits stored in
the object. The printed decimal digits should be between ’0’ and ’9’—if the decimal digit
is 0, then ’0’ is printed, if the decimal digit is 1, then ’1’ is printed, and so on. Finally,
DecPack destroy releases the memory.

17.2.3 Bit Operations

C provides a variety of ways to directly manipulate the bits in a byte, including:

operation operator
bit-wise AND &
bit-wise OR |
shift left <<
shift right >>
exclusive or (XOR) ∧

The bit-wise AND operation is used between two numbers. If the bits from both numbers
are 1, the resultant bit is 1. If one or both bits are zero, then the resultant bit is zero. The
following shows some examples (in binary representation).

0 1 1 0 1 0 0 1
& 1 1 0 1 0 0 1 1

0 1 0 0 0 0 0 1

Sometimes, a program wants to keep some bits while discarding the other bits. For
example, if the program wants to keep only the lower (right) four bits of a byte, then the
program uses bit-wise AND with 0x0F, 0000 1111 in binary.

- - - - a b c d
& 0 0 0 0 1 1 1 1

0 0 0 0 a b c d

It does not matter whether - is 0 or 1, the first (higher, left) four bits of the result will
always be 0. The other four bits: a, b, c, d are either 0 or 1 depending on the values of
a, b, c, and d. This is also called a mask. A mask blocks some bits and allows the other
bits to pass through. If a program wants to check if the leftmost bit is 1 or 0, then it can
use a mask whose binary representation is 1000 0000b (0x80 in hexadecimal). The following
example checks whether the variable a’s leftmost bit is 1 or 0:

unsigned char a = 161;1

unsigned char mask = 0x80;2

i f ((a & mask) == mask)3

{4

// a’s leftmost bit is 15

}6

e l se7

{8

// a’s leftmost bit is 09

}10

In this example, a & mask equals mask because 161 is greater than 127 and the leftmost
bit must be set to 1. Please note that the following if condition is wrong. It is a common
mistake.

284 Intermediate C Programming

unsigned char a = 161;1

unsigned char mask = 0x80;2

i f ((a & mask) == 1)3

{4

// a’s leftmost bit is 15

}6

e l se7

{8

// a’s leftmost bit is 09

}10

Why is this wrong? If a’s leftmost bit is 1, a & mask equals 128, not 1.
The bit-wise AND operator & is useful for masking numbers—setting some bits to zero,

while leaving others unaffected. The bit-wise OR operation is also used between two num-
bers. If the bit from either number is 1, the resultant bit is 1. If both are zero, then the
resultant bit is zero. Here is an example:

0 1 1 0 1 0 0 1
| 1 1 0 1 0 0 0 0

1 1 1 1 1 0 0 1

The bit-wise shift left operation moves bits to the left and adds zeros to the right. The
following example shows left-shifting by two. The leftmost two bits are discarded (marked
as -) and two zeros are added to the right:

0 1 1 0 1 0 0 1 << 2
- - 1 0 1 0 0 1 0 0

The next example shows shifting left by four. The leftmost four bits are discarded
(marked as -) and four zeros are added to the right:

1 1 0 1 1 1 1 0 << 4
- - - - 1 1 1 0 0 0 0 0

Shifting left by one is equivalent to multiplying by two. If the result is greater than 255,
then the leftmost bit is discarded.

The bit-wise shift left operation has a complementary bit-wise shift right operation,
moving bits to the right and adding zeros to the left. The following shows an example of
shifting right by two. The rightmost two bits are discarded (marked as -) and two zeros are
added to the left.

0 1 1 0 1 0 0 1 >> 2
0 0 0 1 1 0 1 0 - -

The next example shows shifting right by four. The rightmost four bits are discarded
(marked as -) and four zeros are added to the right.

1 1 0 1 1 1 1 0 >> 4
0 0 0 0 1 1 0 1 - - - -

Shifting right by one is equivalent to division by two.
The following program shows how to use bit-wise operations:

Programming Problems Using Structure 285

// bits.c1

include <stdio.h>2

include <stdlib.h>3

include <string.h>4

int main (int argc , char * * argv)5

{6

unsigned char a = 129; // decimal 129, hexadecimal 0X817

unsigned char b = 0XF0; // decimal 2408

unsigned char c = a & b; // hexadecimal 0X80 , decimal 1289

printf("%d, %X\n", c, c); // 128, 8010

unsigned char d = a | b; // hexadecimal 0XF1 , decimal 24111

printf("%d, %X\n", d, d); // 241, F112

unsigned char e = d << 3; // hexadecimal 0X88 , decimal 13613

printf("%d, %X\n", e, e); // 136, 8814

unsigned char f = d >> 2; // hexadecimal 0X3C , decimal 6015

printf("%d, %X\n", f, f); // 60, 3C16

return EXIT_SUCCESS ;17

}18

The output of this program is:

128, 80

241, F1

136, 88

60, 3C

The final bit-wise operation that we will consider is the exclusive or operation, often
abbreviated as XOR. With XOR, the resulting bit is 1 if and only if the two input bits are
different from each other. Here is an illustrative example:

0 1 1 0 1 0 0 1
∧ 1 1 0 1 0 0 0 0

1 0 1 1 1 0 0 1

Please note that ∧ means exclusive or (XOR) in C programs. In some other languages, ∧
means exponential. C uses exp for exponential.

17.2.4 Inserting and Retrieving Decimal Digits

In DecPack, a decimal digital (0 to 9) requires only 4 bits. Thus, to put this digital into
the upper 4 bits, it needs to be shifted left by 4; 4 zeros will be added to the right 4 bits.
To retrieve one decimal digit from the upper 4 bits, the byte is shifted right by 4 bits; 4
zeros will be added to the left 4 bits. To put one decimal digital into the lower 4 bits, it can
be added to the byte. To retrieve one decimal digital from the lower 4 bits, a mask 0x0F is
used to block the upper 4 bits.

The indexes need to be carefully managed. The value of used means the number of
digits that have been already inserted. If used is an even number (for example, 8), then the
next inserted digit should be the 9th digit. In C programs, array indexes start from 0. The
9th digit uses the 5th byte and the index should be 4. The index is 8 / 2 (integer division).
Thus, used / 2 is the correct index. If used is an odd number (for example, 11), then the
next inserted digit is the 12th digit. It should be the 6th byte and the index is 5; used / 2

is also the correct index. Thus, used / 2 is the correct index for insertion; used should be
incremented after insertion.

286 Intermediate C Programming

When deleting a digit, used should decrement before the retrieval. Aside from being
symmetric to insertion, this can be understood by working through some examples. Suppose
used is an even number, say 12, then six bytes are used. The last digit is at the 6th byte
and the index is 5. If used decrements first, it becomes 11 and used / 2 is 5. If used is an
odd number, say 9, then we are using five bytes. The last digit is at the 5th byte and the
index is 4. If used decrements first, it becomes 8 and used / 2 is 4. In both cases, used
should decrement before deletion.

17.2.5 DecPack Program

The header file decpack.h is listed below:

// decpack.h1

#ifndef DECPACK_H2

#define DECPACK_H3

typedef struct4

{5

int size; // how many digits can be stored6

int used; // how many digits are actually stored7

unsigned char * data; // store the digits8

// size should be 2 * the actually allocated memory because9

// each byte can store two digits10

} DecPack;11

// create a DecPack object with the given size12

DecPack * DecPack_create(int sz);13

// Insert a decimal value into the DecPack object. The new14

// value is at the end of the array15

void DecPack_insert(DecPack * dp , int val);16

// delete and return the last value in the DecPack object17

// do not shrink the data array even if nothing is stored18

// The returned value should be between 0 and 919

// return -1 if no digit can be deleted20

int DecPack_delete(DecPack * dp);21

// print the values stored in the object , the first inserted22

// value should be printed first23

// the printed values are between ’0’ and ’9’24

void DecPack_print(DecPack * dp);25

// destroy the whole DecPack object , release all memory26

void DecPack_destroy(DecPack * dp);27

#endif28

Here are sample implementations of the functions in decpack.c:

// decpack.c1

include <stdio.h>2

include <stdlib.h>3

include <string.h>4

include "decpack.h"5

DecPack * DecPack_create(int sz)6

{7

// allocate memory for DecPack8

DecPack * dp = malloc(s i z eo f (DecPack));9

Programming Problems Using Structure 287

// check whether allocation fails10

i f (dp == NULL)11

{12

return NULL;13

}14

// initialize size to sz and used to 015

dp -> size = sz;16

dp -> used = 0;17

// allocate memory for data , should be only sz/2 because18

// each byte can store two digits19

20

// if sz is odd , increment sz by one21

i f ((sz % 2) == 1) { sz ++; }22

dp -> data = malloc(s i z eo f (unsigned char) * (sz / 2));23

// check whether allocation fails24

i f (dp -> data == NULL)25

{26

free (dp);27

return NULL;28

}29

// return the allocate memory30

return dp;31

}32

void DecPack_insert(DecPack * dp , int val)33

{34

// if the object is empty , do nothing35

i f (dp == NULL) { return; }36

37

// if val < 0 or val > 9, ignore and do nothing38

i f ((val < 0) || (val > 9)) { return; }39

40

// If the allocated memory is full , double the size ,41

// allocate memory for the new size , copy the data ,42

// and insert the new value43

int used = dp -> used;44

i f (used == dp -> size)45

{46

unsigned char * newdata =47

malloc(s i z eo f (unsigned char) * (dp -> size));48

int iter;49

for (iter = 0; iter < used; iter ++)50

{51

newdata[iter / 2] = dp -> data[iter / 2];52

}53

(dp -> size) *= 2;54

free (dp -> data);55

dp -> data = newdata;56

}57

// If used is an even number , the inserted value should58

// use the upper (left) 4 bits.59

// If used is an odd number , the inserted value should60

288 Intermediate C Programming

// use the lower (right) 4 bits.61

//62

// careful: do not lose the data already stored in DecPack63

i f ((used % 2) == 0)64

{65

// shifting left adds zeros for the lower bits66

dp -> data[used / 2] = (val << 4);67

}68

e l se69

{70

// reset the lower four bits , may be left from delete71

unsigned char upper = dp -> data[used / 2] & 0XF0;72

dp -> data[used / 2] = upper + val;73

}74

(dp -> used) ++;75

}76

int DecPack_delete(DecPack * dp)77

{78

// if the object is empty , do nothing79

i f (dp == NULL) { return -1; }80

// return -1 if the DecPack object stores no data81

i f ((dp -> used) == 0) { return -1; }82

// If used is even , the returned value is the upper83

// (left) 4 bits. Make sure the returned value is between84

// 0 and 9. If used is odd , the returned value is the85

// lower (right) 4 bits. Make sure the returned value86

// is between 0 and 9.87

int val;88

// decrement the used attribute in the DecPack object89

(dp -> used) --;90

int used = dp -> used;91

i f ((used % 2) == 0)92

{93

val = dp -> data[used / 2] >> 4;94

}95

e l se96

{97

val = (dp -> data[used / 2]) & 0X0F;98

}99

// return the value100

return val;101

}102

void DecPack_print(DecPack * dp)103

{104

// if the object is empty , do nothing105

i f (dp == NULL) { return; }106

int iter;107

int used = dp -> used;108

109

// go through every value stored in the data attribute110

for (iter = 0; iter < used; iter ++)111

Programming Problems Using Structure 289

{112

i f ((iter % 2) == 0)113

{114

printf("%d", (dp -> data[iter / 2] >> 4));115

}116

e l se117

{118

printf("%d", (dp -> data[iter / 2] & 0X0F));119

}120

}121

printf("\n");122

}123

void DecPack_destroy(DecPack * dp)124

{125

// if the object is empty , do nothing126

i f (dp == NULL) { return; }127

// release the memory for the data128

free (dp -> data);129

// release the memory for the object130

free (dp);131

}132

This is the main function:

// main.c1

#include <stdio.h>2

#include <stdlib.h>3

#include "decpack.h"4

int main (int argc , char * * argv)5

{6

DecPack * dp = DecPack_create (5);7

int iter;8

for (iter = 0; iter < 21 ; iter ++)9

{10

DecPack_insert(dp , iter % 10);11

}12

DecPack_print(dp);13

for (iter = 0; iter < 7 ; iter ++)14

{15

printf("delete %d\n", DecPack_delete(dp));16

}17

DecPack_print(dp);18

for (iter = 0; iter < 6 ; iter ++)19

{20

DecPack_insert(dp , iter % 10);21

}22

DecPack_print(dp);23

for (iter = 0; iter < 6 ; iter ++)24

{25

printf("delete %d\n", DecPack_delete(dp));26

}27

DecPack_print(dp);28

290 Intermediate C Programming

DecPack_destroy(dp);29

return EXIT_SUCCESS ;30

}31

Here is the Makefile:

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

VALGRIND = valgrind --tool=memcheck --verbose --log -file3

4

decpack: decpack.c decpack.h main.c5

$(GCC) $(CFLAGS) decpack.c main.c -o $@6

$(VALGRIND)=valgrindlog ./ decpack7

8

clean:9

/bin/rm -f *.o decpack *log10

17.3 Binary File and Pointer

Section 16.6 describes how to use fread and fwrite to read and write the attributes of
an object. What happens if the object contains one or more pointers? Consider the following
example:

// structfile.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <time.h>4

#pragma pack (1) // tell compiler not to pad any space5

typedef struct6

{7

int length;8

int * data;9

} Array;10

// for simplicity , this program does not check errors11

int main(int argc , char **argv)12

{13

int length = 10;14

char * filename = "data";15

// create an object16

Array * aptr1 = NULL;17

printf("sizeof(aptr1) = %d\n", (int) s i z eo f (aptr1));18

aptr1 = malloc(s i z eo f (Array));19

printf("sizeof(aptr1) = %d, sizeof(Array) = %d\n",20

(int) s i z eo f (aptr1), (int) s i z eo f (Array));21

// allocate memory for the data22

aptr1 -> length = length;23

aptr1 -> data = malloc(s i z eo f (int) * (aptr1 -> length));24

printf("sizeof(aptr1): %d, sizeof(aptr1 -> data): %d\n",25

(int) s i z eo f (aptr1), (int) s i z eo f (aptr1 -> data));26

Programming Problems Using Structure 291

// initialize the values of the array27

int ind;28

for (ind = 0; ind < (aptr1 -> length); ind ++)29

{30

aptr1 -> data[ind] = ind;31

}32

// save the data to a file33

FILE * fptr = fopen(filename , "w");34

// write the data to the file35

i f (fwrite(aptr1 , s i z eo f (Array), 1, fptr) != 1)36

{37

// fwrite fail38

return EXIT_FAILURE;39

}40

printf("ftell(fptr) = %d\n", (int) ftell(fptr));41

fclose (fptr);42

43

// fill the array with random numbers44

// ensure the heap contains garbage before releasing it45

srand(time(NULL)); // set the seed of the random number46

for (ind = 0; ind < (aptr1 -> length); ind ++)47

{48

aptr1 -> data[ind] = rand();49

}50

51

// release memory52

free(aptr1 -> data);53

free(aptr1);54

// read the data from the file55

Array * aptr2 = NULL;56

aptr2 = malloc(s i z eo f (Array));57

fptr = fopen(filename , "r");58

i f (fread(aptr2 , s i z eo f (Array), 1, fptr) != 1)59

{60

// fread fail61

return EXIT_FAILURE;62

}63

// add the data64

int sum = 0;65

for (ind = 0; ind < (aptr2 -> length); ind ++)66

{67

sum += aptr2 -> data[ind];68

}69

printf("sum = %d\n", sum);70

// release memory71

free(aptr2);72

return EXIT_SUCCESS;73

}74

292 Intermediate C Programming

Assume this program runs on a 64-bit (8 bytes) machine and furthermore, that each
integer uses 4 bytes. Also assume that the program never returns EXIT FAILURE. What is
the output of this program? Here is a sample output:

sizeof(arrptr1) = 8

sizeof(arrptr1) = 8, sizeof(Array) = 12

sizeof(arrptr1) = 8, sizeof(arrptr1 -> data) = 8

ftell(fptr) = 12

sum = 1289469162

The value of sum changes if the program is run again. The array’s elements are set to
random values (line 49) after the data has been written to the file (line 36). When line
59 reads the data, the elements’ values should be 0, 1, 2, ..., right? Wrong. If we run this
program with valgrind, it will tell us that the program has an “Invalid read” at line 68.
Why? The reason is that we cannot use fwrite to save the value of a pointer because this
value is a memory address. The address is meaningless when saved into a file. Instead of
saving the address, the program must save the data stored at the address. To summarize, it
makes no sense to write memory addresses to a file; nor does it make sense to read memory
addresses from a file.

Chapter 18

Linked Lists

18.1 Expandable Types . 293
18.2 Linked Lists . 294
18.3 Inserting Data . 295
18.4 Searching a Linked List . 297
18.5 Deleting from a Linked List . 298
18.6 Printing a Linked List . 302
18.7 Destroying a Linked List . 303

18.1 Expandable Types

In the previous chapters we described two common ways to allocate memory. The first
is static allocation. The advantage of static allocation is that there can be no memory leaks;
however, the size of the array must be known at the time when the program is written. For
example

int arr [100];1

This creates an array with 100 elements.
In many cases, the size is unknown when the program is compiled; however, it is known

after the program starts executing. This is the second scenario. An example is shown below,
where the size is given by the user:

int * arr2;1

int length;2

printf("Please enter the length of the array: ");3

scanf("%d", & length);4

arr2 = malloc(length * s i z eo f (int));5

This scenario is often used when reading data from a file. One common strategy is to:
1. Read the file once to determine how much memory is needed.
2. Allocate the required memory.
3. Call fseek to return to the beginning of the file.
4. Read the file again and store the data in the allocated memory.
This chapter describes how to handle another common scenario: when it is impractical

or impossible to know the size even after the program starts. Memory must be allocated
and released on an as-needed basis. This is a very common scenario.

Imagine that you are creating a social network system. How many users will register? It
is possible that there will be millions of users but we have no direct control over who signs
up. We cannot have a pre-determined number, say five million users, and reject registrations
after there are already five million users. Perhaps we could allocate enough memory for a
few billions users, enough for the foreseeable future. It is wasteful. Moreover, users may
come and go. Some users register but forget their passwords and then create new accounts.

293

294 Intermediate C Programming

It may be necessary to remove accounts that have not been used for more than one year.
To manage this type of application, we must be able to allocate memory on an as-needed
basis. Memory usage must grow and shrink as the demands of the application require. This
chapter describes how to use dynamic structures. The book covers only the basic concepts
and does not give enough knowledge required to actually build a social network site. The
information in this chapter, however, provides a foundation.

If data structures, such as arrays, need to change size as programs run, we can create
a new larger (or smaller) array, copy the data, and then free the old array. Section 17.2
gives an example of an auto-resizing array: If too many digits are inserted, the array’s size
doubles. This chapter explains how to create a simple data structure that is designed to
grow without copying the existing data. It supports the following functions:
• Insert: add new data, and allocate memory as needed.
• Search: determine whether a piece of data has already been inserted.
• Delete: remove data and release memory if it is no longer needed.
• Print: print the stored data.
• Destroy: delete everything before the program ends.
The simple data structure is called a linked list, and is an example of dynamic structures

and is also an example of container structures. Such structures may contain different types
of data (int, char, Person ...). The code to insert, search, delete, print, and destroy is
quite similar for each different type. The next chapter will describe another type of container
structure called the binary tree.

18.2 Linked Lists

A linked list is a collection of nodes that are linked together by pointers. Each node is
an object with at least two attributes:
• A pointer to another node. By convention, this attribute is called next. If a given

node does not have a “next” node, then the next attribute stores NULL.
• Some data. This attribute may be a pointer, an object, or a primitive type such as
int, char, or double.

Below is an example structure, with two attributes, used as a node in a linked list. For
simplicity, the data attribute is an integer.

typedef struct listnode1

{2

struct listnode * next;3

int value;4

} Node; // do not forget ;5

This introduces the concept of a “self-referring structure”. Notice how next is a pointer to
struct listnode? That is what makes it self-referring. Because the C compiler reads source
files from top to bottom, it cannot see the type name Node at the time next is declared.
Thus, we assign a temporary type name: struct listnode. It is possible to refer to the
nodes as struct listnode; however, the structure is called Node from now on. Fig. 18.1
shows three views for the first operation in creating a linked list.

The diagrammatic view in (b) is the most commonly used. In (b), when a pointer’s value
is NULL, it is common to make it point to the “Ground” symbol used in electronics. My
experience working with students suggests that some students are more comfortable with

Linked Lists 295

Node * head = NULL; symbol address value

head 200 NULL
head

(a) (b) (c)

FIGURE 18.1: A linked list starts empty, i.e., without any Node. This figure shows three
views: (a) the source code view, (b) a diagram, and (c) the stack memory.

one particular view than with other views. The three views are shown simultaneously so
that we can see the relationships between the different representations.

18.3 Inserting Data

Node * head = NULL;
head = malloc(size(Node));
head -> next = NULL;
head -> value = 917;

symbol address value address value

head 200 60000 60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917

FIGURE 18.2: Creating a Node object whose value is 917. Please note that head is a
pointer.

Fig. 18.2 shows how to create the very first node in a linked list, and assign a number
to the value attribute. Calling malloc will allocate space in heap memory for the two
attributes. Suppose malloc returns address 60000, then this value is assigned to the value
of head. The next line is:

head -> next = NULL;1

This line assigns NULL to the node’s next attribute. Then, we assign 917 to the value

attribute, which is the data:

head -> value = 917;1

Add space before or after -> makes no difference. We create a function List insert that
can make inserting nodes much more straightforward. The function can

• allocate memory for a new node.
• assign an address to the next attribute.
• assign a value to the value attribute.
Fig. 18.3 shows that the function can simplify inserting a node. Calling List insert

with −504 as the argument creates one more list node and it is inserted at the beginning
of the list. Later, we will explain how to insert −504 at the end of the list. It is simpler to
insert nodes onto the front of a linked list. Please note that this means that the value stored

296 Intermediate C Programming

Node * head = NULL;
head = List_insert(head, 917);

symbol address value address value

head 200 60000 60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917

FIGURE 18.3: Replacing the three lines by using List insert.

at head must change. This is because head must be the newly inserted node that we just
allocated. Note that there is no guarantee that when calling malloc twice we will obtain
consecutive addresses. Fig. 18.4 shows a gap between the memory allocated to the two list
nodes. Fig. 18.5 shows three nodes.

Node * head = NULL;
head = List_insert(head, 917);
head = List_insert(head, -504);

symbol address value address value

head 200 75000 75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917-504

FIGURE 18.4: Calling List insert again to insert another list node.

Here is a sample implementation of the insert function:

// A static function can be called by functions in this1

// file only. Functions outside this file cannot call it.2

s tat i c Node * Node_construct(int val)3

{4

Node * nd = malloc(s i zeo f (Node));5

nd -> value = val;6

nd -> next = NULL;7

return nd;8

}9

10

Node * List_insert(Node * head , int val)11

{12

printf("insert�%d\n", val);13

Node * ptr = Node_construct(val);14

Linked Lists 297

Node * head = NULL;
head = List_insert(head, 917);
head = List_insert(head, -504);
head = List_insert(head, 326);

symbol address value address value

head 200 83000 83001 326

83000 75000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917-504326

FIGURE 18.5: Insert the third object by calling List insert again.

ptr -> next = head; // insert at the beginning15

return ptr;16

}17

In the insert function we use a static function called Node construct. Prefixing a
function with static means that the function can only be used within the current file.
We mark the function static because it is called by List insert only. This constructor
ensures that next is always initialized to NULL. Even though List insert immediately
changes next after calling Node construct, it is a good habit to always initialize next.
Later on, the program tests whether next is NULL to determine whether a node is the last
node in the list. Some students are eager to make their programs faster and do not always
initialize the next pointer inside Node construct. Forgetting to initialize next to NULL is
a common and easily avoidable mistake.

In List insert, the newly constructed node is called ptr. Sometimes students call
this variable new. This is discouraged because new has a special meaning in C++. This is
important when C and C++ programs are integrated together, which happens quite often.

Referring back to the code, line 15 puts the newly created node in front of the head of
the old list. Line 16 returns the newly created node. This makes head point to the newly
created node. Thus, the most recently added node is at the beginning of the list. When
List insert is called again, a new list node is created and it is the beginning of the list.
The value stored at head changes again. We assume there is a gap between this new object
and the other two existing objects.

Pushing new elements onto the front of the list is rather like a “stack”. The end of
the list is always the first inserted value, and the beginning of the list is always the most
recently inserted value. To remove the first inserted value (at the very end of the list), it is
necessary to go through the entire list. If we always remove from the front, then we indeed
meet the property of a stack: first-in, last-out.

298 Intermediate C Programming

18.4 Searching a Linked List

The next function searches a linked list for the node whose value is the same as the
given argument.

Node * List_search(Node * head , int val)1

{2

Node * ptr = head;3

while (ptr != NULL)4

{5

i f ((ptr -> value) == val)6

{7

return ptr;8

}9

ptr = ptr -> next;10

}11

return ptr; // must be NULL12

}13

The function starts from the first node in the list. Before the function does anything, the
function has to check whether the list is empty. This is the purpose of line 4. If the value is
found at line 6, then the function returns the node. Otherwise, ptr moves to the next node.
If multiple nodes store the value matching the argument val, then this function returns
the first match. Line 12 returns ptr and it should always be NULL. If ptr is not NULL, then
the while loop should continue. This example shows the importance of initializing next to
NULL to indicate the end of the list.

18.5 Deleting from a Linked List

The List delete function deletes the Node object whose value is the same as the second
argument. Suppose the program needs to delete the second Node object in the list. After
calling List delete, the first and the third nodes must remain in the linked list. The first
node’s next must point to the third node (now second). This ensures that the node is still
reachable from the head. Fig. 18.6 shows the new list and Fig. 18.7 to Fig. 18.10 show the
steps.

How do we implement List delete? First, the function creates a new pointer p and
makes its value the same as head’s value. The list is accessible from the head. The function
has to keep head’s value, because if head’s value is changed, then we lose the entire list.

Node * List_delete(Node * head , int val)1

{2

printf("delete�%d\n", val);3

Node * p = head;4

i f (p == NULL) // empty list , do nothing5

{6

return p;7

}8

Linked Lists 299

Node * head = NULL;
head = List_insert(head, 917);
head = List_insert(head, -504);
head = List_insert(head, 326);
head = List_delete(head, -504);

symbol address value address value

head 200 83000 83001 326

83000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917326

FIGURE 18.6: Delete the node whose value is −504.

Node * p;
p = head;

symbol address value address value

p 201 83000 83001 326

head 200 83000 83000 75000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917-504326

p

FIGURE 18.7: To delete a list node, first create a pointer p that points to the same
memory address as head.

9

// delete the first node (i.e., head node)?10

i f ((p -> value) == val)11

{12

p = p -> next;13

free (head);14

return p;15

}16

17

// not deleting the first node18

Node * q = p -> next;19

while ((q != NULL) && ((q -> value) != val))20

300 Intermediate C Programming

Node * p;
p = head;
Node * q;
q = p -> next;

symbol address value address value

q 202 75000 83001 326

p 201 83000 83000 75000

head 200 83000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head (b)

917 -504 326

p

q

FIGURE 18.8: The function creates another pointer q. Its value is the same as p->next.

Node * p;
p = head;
Node * q;
q = p -> next;
p -> next = q -> next;

symbol address value address value

q 202 75000 83001 326

p 201 83000 83000 60000

head 200 83000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head(b)

917-504326

p

q

FIGURE 18.9: Modify p->next to bypass the node that is about to be deleted.

{21

// check whether q is NULL before checking q -> value22

p = p -> next;23

q = q -> next;24

}25

i f (q != NULL)26

{27

// delete the node whose value is val28

p -> next = q -> next;29

free (q);30

}31

Linked Lists 301

Node * p;
p = head;
Node * q;
q = p -> next;
p -> next = q -> next;
free (q);

symbol address value address value

q 202 - 83001 326

p 201 83000 83000 60000

head 200 83000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head(b)

917326

p

q

FIGURE 18.10: Release the memory pointed to by q.

return head;32

}33

If head’s value (head -> value) is the same as val, the first node is deleted. This is
achieved by storing head -> next in p at line 14. In this case, the function returns p as the
new head of the list. It is possible that p is set to NULL. This occurs when the list has only
one node and its value is the same as val. After deleting this node, the list is empty.

If head’s value is different from val, then the node to be deleted, if it exists, is after
head somewhere. When we find this node, we must make the previous node point to the
next node. As we will see below, the List delete function uses another pointer q for this
purpose, and its value is p -> next.

Lines 20 to 25 find the node whose value is val. The while loop stops in one of two
conditions: either q is NULL or q -> value is val. To avoid a memory error, the function
must check the first condition before checking the second condition. If q is NULL, then
the second condition is not checked. When q is NULL, the first part of the logical AND
(&&) expression is false and the entire logical AND expression is false. The program does
check whether q -> value is the same as val. This is called short-circuit evaluation and
C programs often rely on it. Lines 23 and 24 move p and q to their next nodes. Since q is
initialized to p -> next, the code inside the entire block always keeps q as p -> next.

What does it means when q is NULL at line 26? It means that no node in the linked
list stores val, and therefore no node needs to be deleted. If q is not NULL, then a node
whose value is val has been located. The function changes p -> next to q -> next. This
bypasses the node q that is about to be deleted. In this method, q is the node to be deleted
and p is the node before q. It is necessary to keep p because it is not possible to go backward
from q to p. The purpose of keeping both p and q is that we cannot go back one node from
q without p. The function then releases the memory pointed to by q. The value stored in q

is still a memory address but that address is no longer valid. Using q’s value after free(q)
will cause segmentation fault. It is also possible to implement List delete with recursion.
Below is a sample implementation. Lines 19 to 31 above can be replaced by a single line as
shown below.

Node * List_delete2(Node * head , int val)1

302 Intermediate C Programming

{2

printf("delete�%d\n", val);3

i f (head == NULL)4

{5

return NULL;6

}7

8

i f ((head -> value) == val)9

{10

Node * p = head -> next;11

free (head);12

return p;13

}14

15

head -> next = List_delete2(head -> next , val);16

return head;17

}18

How does this work? The function checks whether the list is empty (line 4) and then
checks whether the first node is the node to be deleted (lines 9 to 14). How can line 16
in List delete2 replace lines 19 to 31 in List delete? Line 16 calls List delete2 recur-
sively, passing head -> next. This means that every time List delete2 is called, one node
(the head) is excluded. Thus, the list being considered shrinks in every recursive call, and
eventually reaches NULL (checked at line 4) if val is not stored in the list. This ensures that
List delete2 terminates.

This function has three places that call return. Line 6 returns when the list is empty
and nothing can be deleted. Line 13 returns the node after head because head is the node
to be deleted. Line 17 returns head if head is not the node to be deleted.

Consider the scenario when val is not stored in any node. Line 16 assigns head -> next

to what is returned by calling List delete2(head -> next, val). Since val is not
in the list, the condition at line 9 is never true in any of the recursive calls. The
function will always return the first argument. This means that line 16 will reduce to
head -> next = head -> next and the list remains unchanged.

Next consider the case when the list does contain a node whose value is val. In this
case, the condition at line 9 will become true in one recursive call. The function then
returns the node after head, skipping head. This is equivalent to line 15 in List delete.
Thus, List delete2 can delete the node whose value is val. List delete2 does not need
to use q because the call stack stores the value of each node (as head) as the function moves
forward along the list.

18.6 Printing a Linked List

List print is more straightforward than the previous functions because it does not need
to change the list. The function simply goes through the nodes one-by-one and prints the
values. The listing below gives two implementations: one iterative, and one recursive.

void List_print(Node * head)1

{2

printf("\nPrint�the�whole�list:\n");3

Linked Lists 303

while (head != NULL)4

{5

printf("%d�", head -> value);6

head = head -> next;7

}8

printf("\n\n");9

}10

11

s tat i c void List_print2Help(Node * head)12

{13

i f (head == NULL)14

{15

return;16

}17

printf("%d�", head -> value);18

List_print2Help(head -> next);19

}20

21

void List_print2(Node * head)22

{23

printf("\nPrint�the�whole�list:\n");24

List_print2Help(head);25

printf("\n\n");26

}27

List print2 is the recursive function. It prints the message and then calls a helper
function. The helper function goes through the nodes one by one until reaching the end of
the list.

18.7 Destroying a Linked List

List destroy destroys the whole list, releasing the memory for each node. The non-
recursive method keeps a pointer p for the node after the node to be deleted. The recursive
method uses the call stack to keep the value of head. Note that line 18 must be after line
17 because head -> next does not exist after free (head).

void List_destroy(Node * head)1

{2

while (head != NULL)3

{4

Node * p = head -> next;5

free (head);6

head = p;7

}8

}9

10

void List_destroy2(Node * head)11

{12

i f (head == NULL)13

304 Intermediate C Programming

{14

return;15

}16

List_destroy2(head -> next);17

free (head); // must be after the recursive call18

}19

The following main function shows how to use the linked list functions we have developed
in this chapter.

// file: main.c1

#include "list.h"2

#include <stdlib.h>3

#include <stdio.h>4

int main(int argc , char * argv[])5

{6

Node * head = NULL; /* must initialize it to NULL */7

head = List_insert(head , 917);8

head = List_insert(head , -504);9

head = List_insert(head , 326);10

List_print(head);11

head = List_delete(head , -504);12

List_print(head);13

head = List_insert(head , 138);14

head = List_insert(head , -64);15

head = List_insert(head , 263);16

List_print(head);17

i f (List_search(head , 138) != NULL)18

{19

printf("138�is�in�the�list\n");20

}21

e l s e22

{23

printf("138�is�not�in�the�list\n");24

}25

i f (List_search(head , 987) != NULL)26

{27

printf("987�is�in�the�list\n");28

}29

e l s e30

{31

printf("987�is�not�in�the�list\n");32

}33

head = List_delete(head , 263); // delete the first Node34

List_print(head);35

head = List_delete(head , 917); // delete the last Node36

List_print(head);37

List_destroy(head); // delete all Nodes38

return EXIT_SUCCESS;39

}40

The output of this program is:

Linked Lists 305

insert 917

insert -504

insert 326

Print the whole list:

326 -504 917

delete -504

Print the whole list:

326 917

insert 138

insert -64

insert 263

Print the whole list:

263 -64 138 326 917

138 is in the list

987 is not in the list

delete 263

Print the whole list:

-64 138 326 917

delete 917

Print the whole list:

-64 138 326

This page intentionally left blankThis page intentionally left blank

Chapter 19

Programming Problems Using Linked List

19.1 Queues . 307
19.2 Sorting Numbers . 308
19.3 Sparse Arrays . 308
19.4 Reversing a Linked List . 314

19.1 Queues

The function List insert in Section 18.3 always inserts the new value at the beginning
of the list. If we always delete nodes from the front of the list, then the linked list is a
stack. In this problem we change the insert function so that the first inserted value is at
the beginning of the list and the latest inserted value is at the end of the list. If we still
remove elements from the beginning of the list we have created a queue, like a line at a store
waiting for service. The implementation below uses recursion.

Node * List_insert(Node * head , int val)1

{2

i f (head == NULL)3

{4

return Node_construct(val);5

}6

head -> next = List_insert(head -> next , val);7

return head;8

}9

When the if condition is (when head is NULL), the list is empty. Every recursive call
moves forward by following the next link. This condition can be true if the function has
reached the end of the list. When the frame from the call stack is popped, the previous
node’s next is set to a pointer to the newly created node. For nodes not at the end, line 7
is essentially head -> next = head -> next without changing the list.

You may have noticed that this particular linked list implementation of a queue is not
efficient. Every time a node is inserted, the function has to go through the entire list to
reach the end of the list. This is unavoidable because the program only tracks the beginning
of the list. One solution is to keep track of both the beginning (the head) and the end (the
tail) of the list. This requires two pointers.

Another problem is that the links are uni-directional. When deleting a node, it is nec-
essary to keep track of the node before the node to be deleted. This inconvenience can be
solved by using two links in each node: next and previous. If q is p -> next, then p is
q -> previous. The head of the list has no previous node so its previous points to NULL.
The tail of the list has no next node so its next points to NULL. This is called a doubly linked
list. The structure definition for a node in a doubly linked list is shown below:

307

308 Intermediate C Programming

typedef struct listnode1

{2

struct listnode * next;3

struct listnode * previous;4

int value;5

} Node;6

19.2 Sorting Numbers

This problem asks you to modify List insert so that the values in the list are sorted
in the ascending order. This function is similar to the previous one, except for lines 8 to 12.
If val is smaller, it should be inserted before head. Otherwise, it should be inserted after
head, as handled by line 13.

Node * List_insert(Node * head , int val)1

{2

Node * ptr = Node_construct(val);3

i f (head == NULL)4

{5

return ptr;6

}7

i f ((head -> value) > val)8

{9

ptr -> next = head;10

return ptr;11

}12

head -> next = List_insert(head -> next , val);13

return head;14

}15

This and the previous problems use the call stack to keep head. When the recursive
function returns, head is unchanged.

19.3 Sparse Arrays

Arrays are widely used in many applications, but sometimes most of the elements are
zeros. Storing these elements wastes memory. A sparse array stores only those elements
whose values are non-zero. This problem asks you to write a program managing spare
arrays: Each node stores one pair of index and value. The program reads two sparse arrays
from two files, merges the arrays, and stores the new array in a file. How are two arrays
merged?
• If one index exists in one array and is not in the other array, then this element is

added to the new array.
• If the same index exists in both arrays, the values are added. If the value is zero, then

Programming Problems Using Linked List 309

the element is deleted. If the value is not zero, then the element is added to the new
array.

The diagram below illustrates what happens when we join two sparse arrays. Each
element is expressed by an index–value pair.

Array 1
index 0 102 315
value 5 −5 8

Array 2
index 11 102 315
value 2 5 2

Array 1 + Array 2
index 0 11 315
value 5 2 10

The index 102 is not in the new array because the value becomes zero after the two
arrays are joined. To test this implementation, we want to read sparse arrays from disk.
For simplicity, we can assume that in each input file the indexes are distinct. Each line of
the file contains two integers: index and value. The two integers are separated by space.
The indexes stored in a file are not necessarily sorted. The header file is shown below. The
header file declares four functions:

// sparse.h1

#ifndef SPARSE_H2

#define SPARSE_H3

typedef struct linked {4

int index;5

int value;6

struct linked * next;7

} Node;8

// read a sparse array from a file and return the array9

// return NULL if reading fails10

Node * List_read(char * filename);11

// write a sparse array to a file12

// return 1 if success , 0 if fail13

int List_save(char * filename , Node * arr);14

// merge two sparse arrays15

// the two input arrays are not changed and the new array16

// does not share memory with the input arrays17

Node * List_merge(Node * arr1 , Node * arr2);18

// release all nodes in a sparse array19

void List_destroy(Node * arr);20

#endif21

Below is a sample implementation of these four functions. Even though the indexes from
input files are not sorted, the linked lists are sorted by the indexes.

// sparse.c1

#include "sparse.h"2

#include <stdio.h>3

#include <stdlib.h>4

s ta t i c Node * Node_create(int ind , int val);5

s ta t i c Node * List_insert(Node * head , int ind , int val);6

s ta t i c Node * List_copy(Node * head);7

Node * List_read(char * filename)8

{9

310 Intermediate C Programming

FILE * fptr = fopen(filename , "r");10

i f (fptr == NULL)11

{12

return NULL;13

}14

int ind;15

int val;16

Node * head = NULL;17

while (fscanf(fptr , "%d %d", & ind , & val) == 2)18

{19

head = List_insert(head , ind , val);20

}21

fclose (fptr);22

return head;23

}24

int List_save(char * filename , Node * arr)25

{26

FILE * fptr = fopen(filename , "w");27

i f (fptr == NULL)28

{29

return 0;30

}31

while (arr != NULL)32

{33

fprintf(fptr , "%d %d\n", arr -> index , arr -> value);34

arr = arr -> next;35

}36

fclose (fptr);37

return 1;38

}39

Node * List_merge(Node * arr1 , Node * arr2)40

{41

Node * arr3 = List_copy(arr1);42

while (arr2 != NULL)43

{44

arr3 = List_insert(arr3 , arr2 -> index ,45

arr2 -> value);46

arr2 = arr2 -> next;47

}48

return arr3;49

}50

void List_destroy(Node * arr)51

{52

i f (arr == NULL)53

{54

return;55

}56

while (arr != NULL)57

{58

Node * ptr = arr -> next;59

free (arr);60

Programming Problems Using Linked List 311

arr = ptr;61

}62

}63

s ta t i c Node * Node_create(int ind , int val)64

{65

Node * nd = malloc(s i z eo f (Node));66

i f (nd == NULL)67

{68

return NULL;69

}70

nd -> index = ind;71

nd -> value = val;72

nd -> next = NULL;73

return nd;74

}75

// If the same index appears again , add the value76

// The returned list is sorted by the index.77

s ta t i c Node * List_insert(Node * head , int ind , int val)78

{79

i f (val == 0) // do not insert zero value80

{81

return head;82

}83

i f (head == NULL)84

{85

return Node_create(ind , val);86

}87

i f ((head -> index) > ind)88

{89

// insert the new node before the list90

Node * ptr = Node_create(ind , val);91

ptr -> next = head;92

return ptr;93

}94

i f ((head -> index) == ind)95

{96

// merge the nodes97

head -> value += val;98

i f ((head -> value) == 0)99

{100

// delete this node101

Node * ptr = head -> next;102

free (head);103

return ptr;104

}105

return head;106

}107

head -> next = List_insert(head -> next , ind , val);108

return head;109

}110

Node * List_copy(Node * arr)111

312 Intermediate C Programming

{112

Node * arr2 = NULL;113

while (arr != NULL)114

{115

arr2 = List_insert(arr2 , arr -> index , arr -> value);116

arr = arr -> next;117

}118

return arr2;119

}120

Below is a sample main function that we can use to test our implementation.

// main.c1

#include <stdio.h>2

#include <stdlib.h>3

#include "sparse.h"4

int main(int argc , char ** argv)5

{6

i f (argc != 4)7

{8

return EXIT_FAILURE;9

}10

Node * arr1 = List_read(argv [1]);11

i f (arr1 == NULL)12

{13

return EXIT_FAILURE;14

}15

Node * arr2 = List_read(argv [2]);16

i f (arr2 == NULL)17

{18

List_destroy(arr2);19

return EXIT_FAILURE;20

}21

Node * arr3 = List_merge(arr1 , arr2);22

int ret = List_save(argv[3], arr3);23

List_destroy(arr1);24

List_destroy(arr2);25

List_destroy(arr3);26

i f (ret == 0)27

{28

return EXIT_FAILURE;29

}30

return EXIT_SUCCESS;31

}32

Here is a Makefile that combines the compiling and testing.

GCC = gcc1

CFLAGS = -g -Wall -Wshadow2

LIBS =3

SOURCES = sparse.c main.c4

TARGET = main5

VALGRIND = valgrind --tool=memcheck --verbose --log -file6

Programming Problems Using Linked List 313

TEST0 = inputs/input0A inputs/input0B outputs/output07

TEST1 = inputs/input1A inputs/input1B outputs/output18

9

main: $(SOURCES)10

$(GCC) $(CFLAGS) $(SOURCES) -o $@11

./main $(TEST0)12

diff -w outputs/output0 expected/expected013

./main $(TEST1)14

diff -w outputs/output1 expected/expected115

$(VALGRIND)=outputs/valgrindlog0 ./main $(TEST0)16

$(VALGRIND)=outputs/valgrindlog1 ./main $(TEST1)17

18

clean:19

/bin/rm -f main outputs /*20

Let’s assume that we have inputs input0A and input0B as shown below. The expected0
column shows the result of merging the two arrays.

input0A:

76 16151

115 -19702

164 2813

495 8834

912 1165

1124 4586

1396 707

1468 -11008

1777 17729

2064 209310

2333 -116311

2418 -168312

2943 -207813

3545 -53814

3678 -226015

3700 -13116

3708 -159617

3933 205018

4031 -40819

4287 -72820

4363 224421

4857 -229322

4951 -173723

input0B:

1502 17941

2545 -13872

2872 20353

3133 23394

3164 -13735

4218 7136

4934 -15397

expected0:

76 16151

115 -19702

164 2813

495 8834

912 1165

1124 4586

1396 707

1468 -11008

1502 17949

1777 177210

2064 209311

2333 -116312

2418 -168313

2545 -138714

2872 203515

2943 -207816

3133 233917

3164 -137318

3545 -53819

3678 -226020

3700 -13121

3708 -159622

3933 205023

4031 -40824

4218 71325

4287 -72826

4363 224427

4857 -229328

4934 -153929

4951 -173730

314 Intermediate C Programming

Below is a second set of sample inputs and outputs. Some elements (indexes = 54 and
4019) are eliminated in the output because the values add to zero.

input1A:

1769 -11211

1859 21702

4879 -24403

1994 9114

3123 21695

4441 7846

54 -11857

4735 23508

4931 14549

3811 208810

4019 122711

input1B:

54 11851

2328 -24732

2379 22073

886 -6424

1765 -16945

2226 -15426

3103 -7007

2304 23248

2308 -3699

4019 -122710

expected1:

886 -6421

1765 -16942

1769 -11213

1859 21704

1994 9115

2226 -15426

2304 23247

2308 -3698

2328 -24739

2379 220710

3103 -70011

3123 216912

3811 208813

4441 78414

4735 235015

4879 -244016

4931 145417

19.4 Reversing a Linked List

This program asks you to write a function that reverses a linked list by reversing the
individual links between the nodes. The function’s input argument is the head of the linked
list and returns the head of the reversed linked list. This function should not call malloc
directly or indirectly (i.e., calling another function that calls malloc), because it is unnec-
essary and slow.

Node * List_reverse(Node * head);1

Fig. 19.1 shows an example list and its reversed form.

(a)

(b)

FIGURE 19.1: (a) The original linked list. The list’s head points to A. (b) The reversed
linked list. The list’s head points to E.

Programming Problems Using Linked List 315

Fig. 19.2 shows how to reverse a linked list. Suppose the first two nodes have already
been reversed: revhead points to the head of the partially reversed list; orighead points to
the head of the remaining original list; origsec points to the second node of the remaining
list.

(a)

(b)

(c)

(d)

(e)

FIGURE 19.2: (a) Three pointers are used. (b) Change orighead -> next and make it
point to revhead. (c) Update revhead to the new head of the reversed list. (d) Update
orighead to the new head of the remaining list. (e) Update origsec to the second node of
the remaining list.

Below is a sample implementation that reverses a linked list as desired. It essentially
implements the four steps depicted in the figure.

Node * List_reverse(Node * head)1

{2

i f (head == NULL)3

{4

// empty list , nothing to do5

return NULL;6

}7

Node * orighead = head;8

Node * revhead = NULL; // must initialize to NULL9

Node * origsec; // will be assigned before using10

while (orighead != NULL)11

316 Intermediate C Programming

{12

origsec = orighead -> next;13

orighead -> next = revhead;14

revhead = orighead;15

orighead = origsec;16

}17

return revhead;18

}19

The order of the four steps inside while is important. It would be wrong if the order
were different. For example, reversing lines 13 and 14 would lose the remaining list because
orighead -> head has already been changed and origsec is the same as revhead. Re-
member to initialize revhead to NULL because it will be the end of the reversed list. It is
unnecessary to initialize origsec because it is orighead -> next before it is used.

Chapter 20

Binary Search Trees

20.1 Binary Search Tree . 318
20.2 Inserting Data into a Binary Search Tree . 319
20.3 Searching a Binary Search Tree . 323
20.4 Printing a Binary Tree . 324
20.5 Deleting from a Binary Search Tree . 327
20.6 Destroying a Binary Search Tree . 330
20.7 main . 331
20.8 Makefile . 332

20.9 Counting the Different Shapes of a Binary Tree . 332

The previous chapter explained linked lists. Each Node has precisely one link called next.
Traversing the list to find a given node means starting at the first node—usually called the
head—and visiting each node in turn. In a doubly linked list, each Node has two links (next
and previous). A doubly linked list allows for traversing forward using next and backward
using previous. Even though doubly linked lists are more convenient, they still have the
same limitations of singly linked lists. If the list is long, then finding particular nodes may
require visiting many nodes. If we want to efficiently add and remove data, a linked list is
insufficient.

Section 15.1 provides an example of quickly locating data in an array by skipping large
portions of it. This is a step in the right direction. Note, however, that the array must be
sorted before a binary search can be applied. Furthermore, the array’s size is fixed. Inserting
an element in an array can be expensive, because there may not be enough memory available.
It is necessary to allocate a new array and copying data before freeing the old array. If the
new element is inserted at the beginning, all the elements must be moved. This is inefficient.

Can a dynamic structure support the efficient searching properties of binary searching,
but still preserve the ability to quickly add and remove elements? Binary search trees are
designed to do precisely that. A binary search tree can typically discard half of the data in
a single comparison. This makes search efficient. A binary search tree is one type of binary
tree. A binary search tree is always a binary tree, but a binary tree may not necessarily
be a binary search tree. We will start exploring binary search trees and then generalize to
binary trees.

Like a linked list, a binary search tree is composed of nodes that are linked together.
The tree is a single root node similar to the head node in a linked list. Every node in a
binary tree has two links called left and right. A binary tree is different from a doubly
linked list. In a doubly linked list, if p -> next is q, then q -> previous must be p. It is
possible to reach p from q and it is also possible to reach q from p. Even though each node
has two links, they form a single chain.

The situation is fundamentally different in binary trees. Although each node has two
links, the links point to distinct nodes. This means that if q is p -> left or p -> right,
neither q -> left nor q -> right is p. It is possible to reach q from p but it is impossible
to reach p from q.

317

318 Intermediate C Programming

The following are some terms used for binary trees. If q is p -> left, then q is called
p’s left child. If r is p -> right, then r is p’s right child. We call p the parent of q and r.
We also say that q and r are siblings. If a node has no child, then it is called a leaf node.
All the nodes on the left side of p are called p’s left subtree. All the nodes on the right side
of p are called p’s right subtree. The top node is called the root of the tree, and the root
can reach every node in the tree.

Fig. 20.1 shows an example of a binary tree. The root stores the value 8. The value 4 is
stored in the left child of the root. The nodes storing 1, 4, 5, and 7 are the left subtree of
the root. The nodes storing 9, 10, 11, 12, and 15 are the right subtree of the root.

FIGURE 20.1: An example of a binary search tree.

The distance of a node from the root is the number of links between the root and the
node. For example, the distance between the node 7 and the root is 2. The height of a
binary tree is one plus the longest distance in the tree. The height of the tree above is 4. In
a full binary tree, each node has either two children or no children. The tree in Fig. 20.1 is
not full because some nodes (nodes 7, 9, and 12) have only one child. In a complete binary
tree, each node, except the nodes just above the leaf nodes, has two children. Fig. 20.1 is
complete but not full.

It is possible for a node in a complete binary tree to have only one child, and thus not
be a full binary tree. It is also possible that a full binary tree is incomplete. If a binary tree
is full and complete and its height is n (i.e., the distance between a leaf node and the root
is n− 1), then the tree has precisely 2n− 1 nodes and 2n−1 leaf nodes. In a balanced binary
tree, the difference between the height of the left subtree and the height of the right subtree
is at most one. A binary tree is degenerated if each node has at most one child. In this case,
the binary tree is essentially a linked list.

We can create tree structures in which each object has three or more links. For example,
many computer games take advantage of octrees where each node has eight children. In this
case, octrees are used to partition three-dimensional space, and are thus useful for indexing
the objects in 3D worlds. This book focuses on binary trees because they are useful for a
wide array of problems.

20.1 Binary Search Tree

A binary search tree is a binary tree and satisfies the following conditions:
• Each node has two links and one data attribute. This data attribute can be a primitive

type (int, double, char, etc.) or an object.
• The data attributes store values that must be distinct.
• The data attributes must be totally ordered. If a and b are the values stored in two

different nodes, then either a < b or a > b must be true. Transitivity must be satisfied

Binary Search Trees 319

(if a < b and b < c, then a < c). For example, integers, characters, floating-point
numbers, and strings all support total ordering. Complex numbers are not totally
ordered and cannot be used as the attributes for binary search trees.
• For every node p in a tree, if p has a left child node q, then q -> value must be

smaller than p -> value. Similarly, if p has a right child node r, then r -> value

must be greater than p -> value.
Fig. 20.1 is an example of a binary search tree. Below is the header file for a binary

search tree. It shows the structure definition for a tree node, and gives function declarations
for binary search trees.

// tree.h1

#ifndef TREE_H2

#define TREE_H3

#include <stdio.h>4

typedef struct treenode5

{6

struct treenode * left;7

struct treenode * right;8

int value;9

} TreeNode;10

// insert a value v to a binary search tree starting11

// with root , return the new root12

TreeNode * Tree_insert(TreeNode * root , int v);13

// search a value in a binary search tree starting14

// with root , return the node whose value is v,15

// or NULL if no such node exists16

TreeNode * Tree_search(TreeNode * root , int v);17

// delete the node whose value is v in a binary search18

// tree starting with root , return the root of the19

// remaining tree , or NULL if the tree is empty20

TreeNode * Tree_delete(TreeNode * root , int v);21

// print the values stored in the binary search tree22

void Tree_print(TreeNode * root);23

// delete every node24

void Tree_destroy(TreeNode * root);25

#endif26

A binary search tree has similar functionality to a linked list. For example, both struc-
tures support insert, search, and delete. The differences are the internal organization and
the efficiency of these operations. Note that a linked list can be considered a special case of
a binary tree where every node uses only one link, and the other link is always NULL.

20.2 Inserting Data into a Binary Search Tree

As in the chapter on linked lists, we will present the three views of a binary search tree.
Fig. 20.2 illustrates an empty binary tree (in three ways). Remember that the starting point
of a binary tree is called root instead of head. Fig. 20.3 creates the first tree TreeNode. It
is better to create a function Tree insert than write these three statements over and over
again. (Remember, DRY code means Don’t Repeat Yourself.)

320 Intermediate C Programming

Node * root = NULL;
symbol address value

root 200 NULL

root

(a) (b) (c)

FIGURE 20.2: An empty tree has one pointer called root and its value is NULL; root is
a pointer and it is not a tree node.

Node * root = NULL;

root = malloc(size(Node));

root -> left = NULL;

root -> right = NULL;

root -> value = 917;

symbol address value address value

root 200 60000 60002 917

60001 NULL

60000 NULL

Call Stack Heap Memory

(a)

(c)

root

(b)
917

FIGURE 20.3: A binary tree with only one tree node. Both left and right are NULL.
This node is called the root because it has no parent. It is also a leaf node because it has
no children.

Node * root = NULL;

root = List_insert(root, 917);

root = List_insert(root, -504);

symbol address value address value

root 200 60000 75002 -504

75001 NULL

75000 NULL

60002 917

60001 NULL

60000 75000

Call Stack Heap Memory

(a)

(c)

root
(b)

917

-504

FIGURE 20.4: A binary tree with two nodes. The node with value 917 remains the root.
It is no longer a leaf node because it has one child. The node with value −504 is a leaf node
because it has no children.

Binary Search Trees 321

Node * root = NULL;

root = List_insert(root, 917);

root = List_insert(root, -504);

root = List_insert(root, 1226);

symbol address value address value

root 200 60000 86002 1226

86001 NULL

86000 NULL

75002 -504

75001 NULL

75000 NULL

60002 917

60001 86000

60000 75000

Call Stack Heap Memory

(a)

(c)

(b) root 917

-504

1226

FIGURE 20.5: A binary tree with three nodes.

Node * root = NULL;

root = List_insert(root, 917);

root = List_insert(root, -504);

root = List_insert(root, 1226);

root = List_insert(root, 73);

root = List_insert(root, 1085);

(a)

(d)

(b)

root 917

-504

1226

73

1085

root

917

-504

73

1226

1085

FIGURE 20.6: A binary tree with five tree nodes. A new view (d) simplifies the repre-
sentation of the tree.

322 Intermediate C Programming

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

FIGURE 20.7: Insert values 8, 4, 11, 1, 9, 7, 10, 5, 12, 15.

Fig. 20.4 shows the tree after inserting two nodes. Since −504 is smaller than 917, the
second node is inserted to the left of the first node. This is an essential property of binary
search trees. Also, note that the root’s value (the address of the root node) does not change
after inserting the first node. In this example, the value remains 60000.

Fig. 20.5 shows that another tree node is inserted. The value is 1226 and it is larger
than 917. Thus, it is inserted to the right side of the first node. Fig. 20.6 shows a tree with
five tree nodes. The second view in (b) quickly becomes complicated as more nodes are
inserted. The memory view is also getting quite long. Thus, a different representation is
more convenient, as shown in Fig. 20.6 (d). In this view, each tree node is represented as an
oval. Note that “tree”s are drawn upside down, i.e., the root is at the top. This is different
from the trees seen in forests.

The values −504 and 73 are smaller than the value at root, so both tree nodes are at
the left side of root. Because 73 is larger than −504, 73 is at the right side of −504. Binary
search tree has an important property: For any tree node whose value is val, all tree nodes
on the left side have values smaller than val. Furthermore, all tree nodes on the right side
have values larger than val. Fig. 20.7 shows a binary search as values are inserted. The first
inserted value is the tree’s root.

The following code listing gives an implementation Tree insert, as well as an auxiliary
function TreeNode construct. It is static because it should not be called by any function
outside this file. When inserting a new value into a binary search tree, a new leaf node is
created. That means that the new node never has any children. Tree insert is similar to
the insert function in Section 19.1, where a linked list is used as a queue, and the newly
created node is placed at the end.

// treeinsert.c1

#include "tree.h"2

Binary Search Trees 323

#include <stdlib.h>3

s ta t i c TreeNode * TreeNode_construct(int val)4

{5

TreeNode * tn;6

tn = malloc(s i z eo f (TreeNode));7

tn -> left = NULL;8

tn -> right = NULL;9

tn -> value = val;10

return tn;11

}12

13

TreeNode * Tree_insert(TreeNode * tn, int val)14

{15

i f (tn == NULL)16

{17

// empty , create a node18

return TreeNode_construct(val);19

}20

// not empty21

i f (val == (tn -> value))22

{23

// do not insert the same value24

return tn;25

}26

i f (val < (tn -> value))27

{28

tn -> left = Tree_insert(tn -> left , val);29

}30

e l se31

{32

tn -> right = Tree_insert(tn -> right , val);33

}34

return tn;35

}36

20.3 Searching a Binary Search Tree

To find whether a given number is stored in a binary search tree, the search function
compares the number with the value stored at the root. If the two values are the same, then
we know that the value is stored in the tree. If the number is greater than the value stored
at the root, then it is impossible to find the value on the left side of the tree. If the number
is smaller than the value stored at the root, then it is impossible to find the value on the
right side of the tree. This property is applied recursively until either (1) there is nothing
to search or (2) it is found. This is precisely why a binary search tree is called a binary -
search - tree: It is a tree that naturally supports searches. It is called binary search because
in each step, either the left subtree or the right subtree is discarded. In general, searching
binary search trees is far more efficient than searching linked lists. It is most efficient when

324 Intermediate C Programming

the left side and the right side of each node have the same number of nodes. In this case,
half of the search space is discarded after each comparison, because we no longer need to
consider half of the nodes in the tree. The following shows how to implement Tree search.

// treesearch.c1

#include "tree.h"2

TreeNode * Tree_search(TreeNode * tn, int val)3

{4

i f (tn == NULL)5

{6

// cannot find7

return NULL;8

}9

i f (val == (tn -> value))10

{11

// found12

return tn;13

}14

i f (val < (tn -> value))15

{16

// search the left side17

return Tree_search(tn -> left , val);18

}19

return Tree_search(tn -> right , val);20

}21

Note the similarities to the binary search over an array as described in Section 15.1. A
binary search tree is more flexible than a sorted array because a binary search tree supports
efficient insertion and deletion.

When I teach binary search trees, I always get this question: Why do we use binary
search trees (two links per node)? Why don’t we use ternary search trees (three links)? Or
quaternary search trees (4 links)? Earlier, I said the main problem of linked lists (one link
per node) is that finding a node needs to visit many nodes. Do binary search trees solve
this problem? Why?

There is a fundamental difference between one and two. For any positive number n, it is
possible to find a number k (maybe negative or irrational) such that 2k is n. For example,
if n is 0.5, k is −1. If n is 3.7, k is approximately 1.8875. If n is 191.6, k is approximately
7.5819. In contrast, one does not have this property. For any number m, 1m is still one.
What does this mean? It is possible to accomplish something by using two but it cannot be
accomplished by using one. The most important difference between linked lists and binary
trees is that the latter may discard large amounts of data very quickly. This is impossible if
only one link is used. For the same positive number n, it is possible to find another number
p such that 3p is n. Thus, two can do what three can do and vice versa. Moving from one
link (linked list) to two links (binary tree) is a fundamental improvement. However, moving
from two links to three (or four) links is not a fundamental improvement. Ternary search
trees can be better in some scenarios but there is no fundamental advantage.

Binary Search Trees 325

20.4 Printing a Binary Tree

Tree print can be implemented in three characteristically different ways. In each case,
the function has three steps:

(1) Visiting the node’s left side (subtree).
(2) Visiting the node’s right side.
(3) Printing the node’s value.

Visiting every node in a tree is also called traversing the tree. Every node is visited once,
and only once. There are 3! = 6 ways to order these three steps but (1) usually precedes
(2). Thus, the three ways to implement Tree print are:

• Pre-order traversal. The three steps are ordered as (3) → (1) → (2).
• In-order traversal. The three steps are ordered as (1) → (3) → (2).

For a binary search tree, in-order will print the values in the ascending order.
• Post-order traversal. The three steps are ordered as (1) → (2) → (3).

It is important to understand these three traversal methods, because each one is useful
in different circumstances, as will become apparent later in this book. The code listing below
shows an example of printing a tree using pre-order, in-order, and post-order traversals.

// treeprint.c1

#include "tree.h"2

s ta t i c void TreeNode_print(TreeNode *tn)3

{4

printf("%d ",tn -> value);5

}6

7

s ta t i c void Tree_printPreorder(TreeNode *tn)8

{9

i f (tn == NULL)10

{11

return;12

}13

TreeNode_print(tn);14

Tree_printPreorder(tn -> left);15

Tree_printPreorder(tn -> right);16

}17

18

s ta t i c void Tree_printInorder(TreeNode *tn)19

{20

i f (tn == NULL)21

{22

return;23

}24

Tree_printInorder(tn -> left);25

TreeNode_print(tn);26

Tree_printInorder(tn -> right);27

}28

29

s ta t i c void Tree_printPostorder(TreeNode *tn)30

326 Intermediate C Programming

(a) (b) (c)

FIGURE 20.8: Three differently shaped binary search trees.

{31

i f (tn == NULL)32

{33

return;34

}35

Tree_printPostorder(tn -> left);36

Tree_printPostorder(tn -> right);37

TreeNode_print(tn);38

}39

40

void Tree_print(TreeNode *tn)41

{42

printf("\n\n===== Preorder =====\n");43

Tree_printPreorder(tn);44

printf("\n\n===== Inorder =====\n");45

Tree_printInorder(tn);46

printf("\n\n===== Postorder =====\n");47

Tree_printPostorder(tn);48

printf("\n\n");49

}50

Consider the different shapes of binary search trees in Fig. 20.8. How do the outputs
differ for each of the three traversal methods?

These three trees store the same values. They have different shapes due to the order of
insertion. In (a), 8 is inserted first. In (b), 11 is inserted first. In (c), 4 is inserted first. The
outputs of the three traversal methods are shown below.

(a) (b) (c)
pre-order 8 4 11 11 8 4 4 8 11
in-order 4 8 11 4 8 11 4 8 11
post-order 4 11 8 4 8 11 11 8 4

The pattern in in-order traversal is the easiest to see—the values are always visited
in the ascending order. In other words, this is a method of traversing the values in a
sorted ordering. Hence the name in-order traversal. One consequence of this is that in-order
traversal has the same outputs for the three differently shaped trees. Thus in-order traversal
cannot distinguish between different shapes of trees. In contrast, pre-order and post-order
traversals do distinguish the different shapes. If we want to describe the shape of a tree,
then in-order will not work. Pre-order and post-order traversals make this possible.

What are the outputs when printing with different traversal methods on the trees shown
in Fig. 20.9?

Binary Search Trees 327

(a) (b)

FIGURE 20.9: Examples of binary search trees.

(a) (b)
pre-order 8 4 1 7 11 9 8 4 1 7 5 11 9 10 12
in-order 1 4 7 8 9 11 1 4 5 7 8 9 10 11 12
post-order 1 7 4 9 11 8 1 5 7 4 10 9 12 11 8

Answering this question helps visualize the different traversal techniques. To write the
output of a pre-order traversal for (b), write the value of the root first:

8

It is followed by the outputs of the left subtree and then the right subtree.

8 pre-order of left subtree pre-order of right subtree

The pre-order traversal of the left subtree starts with 4. The pre-order traversal of 4’s
left subtree is 1 and the pre-order traversal of 4’s right subtree is 7 5.

The pre-order traversal of the right subtree starts with 11. The pre-order traversal of
11’s left subtree is 9 10 and the pre-order traversal of 11’s right subtree is 12.

Thus, the output is

8 4 1 7 5 11 9 10 12

20.5 Deleting from a Binary Search Tree

Deleting a node from a binary search tree is more complex than inserting because in-
sertion adds only leaf nodes. Deleting a non-leaf node must maintain the tree’s ordering
property. When deleting a node, there are three different scenarios, as shown in Fig. 20.10.

1. If the node has no children, then release the memory occupied by this node. The
pointer that originally points to this child is set to NULL. Fig. 20.10 (b) illustrates this
scenario.

2. If the node has only one child, then the node’s parent points to the node’s only child
and releases the memory occupied by the node. Fig. 20.10 (c) illustrates this scenario.

328 Intermediate C Programming

(a)

(b)

(c)

FIGURE 20.10: (a) The original binary search tree. (b) Deleting the node “5”. The node
is a leaf node (has no children). This is the first case. The left child of node “7” becomes
NULL. (c) Deleting the node “14”. This node has one child. This is the second case. The
parent of “14” points to the only child of “14”, i.e., “12”.

3. If the node has two children, then find this node’s immediate successor. The immediate
successor is the node that appears immediately after this node in an in-order traversal.
The successor must be on the right side of the node. Exchange the values of the
node with its immediate successor. Then delete the successor. Fig. 20.11 (a) and (b)
illustrates this scenario. Note that the successor cannot not have the left child. Why?

Below is a sample implementation of the delete function. Lines 39–43 finds tn’s imme-
diate successor. The immediate successor is at the right side of tn and hence su starts with
tn -> right. The immediate successor must also be the leftmost node on tn’s right side.
The immediate successor cannot have a left child. Otherwise it would not be the immediate
successor. Note that the immediate successor may have the right child. It is also possible to
use the immediate predecessor but this book uses the successor.

// treedelete.c1

#include "tree.h"2

#include <stdlib.h>3

TreeNode * Tree_delete(TreeNode * tn, int val)4

Binary Search Trees 329

(a)

(b)

FIGURE 20.11: (a) The node “8” has two children. This is the third case. Exchange the
values of this node and its successor. The tree temporarily loses its ordering property. (b)
Deleting the node “8” restores the property of the binary search tree.

{5

i f (tn == NULL) { return NULL; }6

i f (val < (tn -> value))7

{8

tn -> left = Tree_delete(tn -> left , val);9

return tn;10

}11

i f (val > (tn -> value))12

{13

tn -> right = Tree_delete(tn -> right , val);14

return tn;15

}16

// v is the same as tn -> value17

i f (((tn -> left) == NULL) && ((tn -> right) == NULL))18

{19

// tn has no child20

free (tn);21

return NULL;22

}23

i f ((tn -> left) == NULL)24

{25

// tn -> right must not be NULL26

TreeNode * rc = tn -> right;27

free (tn);28

return rc;29

}30

i f ((tn -> right) == NULL)31

{32

// tn -> left must not be NULL33

330 Intermediate C Programming

TreeNode * lc = tn -> left;34

free (tn);35

return lc;36

}37

// tn have two children38

// find the immediate successor39

TreeNode * su = tn -> right; // su must not be NULL40

while ((su -> left) != NULL)41

{42

su = su -> left;43

}44

// su is tn’s immediate successor45

// swap their values46

tn -> value = su -> value;47

su -> value = val;48

// delete su49

tn -> right = Tree_delete(tn -> right , val);50

return tn;51

}52

After swapping the values, Fig. 20.11 (a) is temporarily not a binary search tree. This is
because the value “8” is now on the right side of “9”, a violation of the binary search tree’s
properties. When “8” is deleted, then the tree becomes a binary search tree again.

A common mistake at line 49 is calling Tree delete(tn, val). This is wrong because
“8” is smaller than “9”. Using Tree delete(tn, val) causes the function to search for
(and attempt to delete) “8” from the left side of “9”. Since “8” is not on the left side, the
function will fail to do anything. If nothing is deleted, the function returns the root tn and
this line becomes tn -> right = tn. A node that is its own parent creates many problems
and furthermore all nodes to the right side (“8”, “11”, and “12”) are lost.

Another common mistake is to write while (su != NULL) at line 40. The while loop
will continue until su is NULL, and the program will have segmentation fault at line 46 when
it attempts to read su -> value.

20.6 Destroying a Binary Search Tree

The Tree destroy function destroys the whole tree by releasing the memory occupied
by all the tree nodes.

// treedestroy.c1

#include "tree.h"2

#include <stdlib.h>3

void Tree_destroy(TreeNode * n)4

{5

i f (n == NULL)6

{7

return;8

}9

Tree_destroy(n -> left);10

Tree_destroy(n -> right);11

Binary Search Trees 331

free(n);12

}13

Note that every node must be destroyed once, and only once. Thus it is necessary to
traverse the tree. Also note that both left and right must be destroyed before this tree
node’s memory is released. Can you tell what type of traversal this is?

20.7 main

Below is a main function that inserts and deletes random values into a binary search
tree:

// main.c1

#include "tree.h"2

#include <time.h>3

#include <stdlib.h>4

#include <stdio.h>5

int main(int argc , char * argv[])6

{7

TreeNode * root = NULL;8

int num = 0;9

int iter;10

unsigned int seed = time(NULL);11

seed = 0;12

srand(seed);13

i f (argc >= 2)14

{15

num = (int) strtol(argv[1], NULL , 10);16

}17

i f (num < 8)18

{19

num = 8;20

}21

int * array = malloc(s i zeo f (int) * num);22

for (iter = 0; iter < num; iter ++)23

{24

array[iter] = rand() % 10000;25

}26

for (iter = 0; iter < num; iter ++)27

{28

int val = array[iter];29

printf("insert�%d\n", val);30

root = Tree_insert(root , val);31

Tree_print(root);32

}33

for (iter = 0; iter < num; iter ++)34

{35

int index = rand() % (2 * num);36

i f (index < num)37

332 Intermediate C Programming

{38

int val = array[index];39

printf("delete�%d\n", val);40

root = Tree_delete(root , val);41

Tree_print(root);42

}43

}44

Tree_destroy(root);45

free (array);46

return EXIT_SUCCESS;47

}48

20.8 Makefile

The following listing is an example Makefile for compiling and running the code under
valgrind.

CFLAGS = -g -Wall -Wshadow1

GCC = gcc $(CFLAGS)2

SRCS = treemain.c treesearch.c treedestroy.c treeinsert.c3

SRCS += treeprint.c treedelete.c4

OBJS = $(SRCS:%.c=%.o)5

6

tree: $(OBJS)7

$(GCC) $(OBJS) -o tree8

9

memory: tree10

valgrind --leak -check=yes --verbose ./tree 1011

12

.c.o:13

$(GCC) $(CFLAGS) -c $*.c14

15

clean:16

rm -f *.o a.out tree17

20.9 Counting the Different Shapes of a Binary Tree

How many unique shapes can a binary tree with n nodes possibly have? This is the
definition of shapes. Two binary trees have the same shape if each node has the same
number of left offsprings and the same number of right offsprings. This rule is applied
recursively until reaching leaf nodes. Fig. 20.12 shows the different shapes of trees with two
or three nodes. Table 20.1 gives the number of uniquely shaped binary trees with 1 through
10 nodes.

Binary Search Trees 333

(a)

(b)

FIGURE 20.12: (a) There are two uniquely shaped binary trees with 2 nodes. (b) There
are five uniquely shaped binary trees with 3 nodes.

n 1 2 3 4 5 6 7 8 9 10
number of shapes 1 2 5 14 42 132 429 1430 4862 16796

TABLE 20.1: The numbers of shapes for binary trees of different sizes.

Suppose there are f(n) shapes for a binary tree with n nodes. First note that by obser-
vation we can tell that f(1) = 1 and f(2) = 2 We can use this as a base case for a recursive
function.

If there are k nodes on the left side of the root node, then there must be n−k−1 nodes
on the right side or the root node. Here k can be 0, 1, 2, ..., n − 1. By definition, the left
subtree has f(k) possible shapes and the right side has f(n − k − 1) possible shapes. The
shapes on the two sides are independent of each other. This means that for every possible
shape in the left subtree, we count every shape in the right subtree. Thus, if the left subtree
has k nodes, then the total possible number of shapes is: f(k)× f(n− k − 1). The value of
k is between 0 and n− 1 nodes. The total number of shapes is the sum of all the different
possible values of k.

f(n) =

n−1∑
k=0

f(k)× f(n− k − 1) (20.1)

Using recursion is easier because we can assume that simpler (smaller) cases have al-
ready been solved. This formula gives the Catalan numbers in Section 15.4. To prove the
equivalence, let us consider the six possible permutations of 1, 2, 3:

1. < 1, 2, 3 >
2. < 1, 3, 2 >
3. < 2, 1, 3 >
4. < 2, 3, 1 >
5. < 3, 1, 2 >
6. < 3, 2, 1 >
Among these six permutations, < 2, 3, 1 > is not stack sortable as shown in Section 15.4.

Thus, five permutations are stack sortable. Next, consider binary search trees that store the
three numbers.

It is not possible to have < 2, 3, 1 > as the result of pre-order traversal of a binary
search tree that stores 1, 2, and 3. This is not a coincidence. Suppose s(n) is the number
of possible stack-sortable permutations of 1, 2, 3, ..., n. It turns out s(n) is the Catalan

334 Intermediate C Programming

(a) (b) (c) (d) (e)

FIGURE 20.13: Five different shapes for the pre-order traversals of binary search trees
storing 1, 2, and 3. (a) < 1, 2, 3 >, (b) < 1, 3, 2 >, (c) < 2, 1, 3 >, (d) < 3, 2, 1 >, (e)
< 3, 1, 2 >.

numbers as well. As illustrated by the example above, s(n) ≤ n! because there are n! possible
permutations of 1, 2,..., n. If n > 2, s(n) must be smaller than n!. We have already seen
that s(3) = 5 ≤ 3! = 6

Below is a proof that s(n) defines the sequence of Catalan numbers. Suppose a se-
quence of numbers < a1, a2, a3, ...an > is a particular permutation of 1, 2, ..., n and the
sequence is stack-sortable. Any prefix < a1, a2, a3, ...ak >, k < n must be stack-sortable.
Suppose ai (1 ≤ i ≤ n) is n (the largest number in the entire sequence). Then the sequence
< a1, a2, a3, ...an > can be divided into three parts:

< a1, a2, ..., ai−1 > ai = n < ai+1, ai+2, ..., an >

What is the condition that makes a sequence stack-sortable? Section 15.4 explained
that max(a1, a2, ..., ai−1) must be smaller than min(ai+1, ai+2, ..., an). Therefore, the first
sequence must be a permutation of 1, 2, ..., i − 1 and the second sequence must be a
permutation of i, i + 1, ..., n − 1. Moreover, the two sequences < a1, a2, ..., ai−1 > and
< ai+1, ai+2, ..., an > must also be stack-sortable; otherwise, the entire sequence cannot be
stack-sortable. Therefore the entire sequence includes two stack-sortable sequences divided
by ai = n. By definition, there are s(i− 1) stack-sortable permutations of 1, 2, 3, ..., i− 1.
There are s(n− i) stack-sortable permutations of i, ..., n−1. The permutations in these two
sequences are independent so there are s(i− 1)× s(n− i) possible permutations of the two
sequences. The value of i is between 1 and n. When i is 1, the first value in the sequence is
n and this corresponds to the tree in which the root has no left child. When i is n, the last
value is n and this corresponds to the tree in which the root has no right child. Thus, the
total number of stack-sortable permutations is:

s(n) =

n∑
i=1

s(i− 1)× s(n− i) =

n−1∑
i=0

s(i)× s(n− i− 1). (20.2)

This is the Catalan number.

Chapter 21

Parallel Programming Using Threads

21.1 Parallel Programming . 335
21.2 Multi-Tasking . 336
21.3 POSIX Threads . 336
21.4 Subset Sum . 338

21.4.1 Generate Test Cases . 339
21.4.2 Sequential Solution . 341
21.4.3 Multi-Threaded Solution . 345

21.5 Interleaving the Execution of Threads . 348
21.6 Thread Synchronization . 353
21.7 Amdahl’s Law . 356

Multi-core processors are everywhere: high-end desktops have multiple cores. Even mobile
phones also have multi-core chips. It has become difficult to make individual cores faster, but
adding more cores is easier. More cores do not necessarily mean faster programs, because
many factors affect a computer’s performance. The number of cores is one factor, but the
software is also important. If a program does not take advantage of multiple cores, then
it may as well be running on a single core processor. If a program is written for multiple
cores, then the program can be referred to as a parallel program. If a program is not written
for multiple cores, then it is called a sequential program. All programs so far in this book
are sequential programs. This chapter provides an introduction to writing parallel programs
using threads.

21.1 Parallel Programming

There are many ways to write parallel programs. A parallel program performs multiple
operations at the same time. Parallel programs are often classified into three categories:

1. SIMD: single instruction, multiple data. This is commonly used in signal processing,
such as manipulating data in arrays. When adding two arrays, the same instruction
(addition) is applied to all array elements at once.

2. MISD: multiple instructions, single data. Different operations are performed on the
same piece of data. As an example, census data are widely studied for various purposes.
The same data may be processed simultaneously by different threads of execution, in
order to find, for example, the average and median age of a population at once.

3. MIMD: multiple instructions, multiple data. This is the most general case. Different
operations are performed on different pieces of data.

A sequential program is SISD: At any moment, the program is performing one operation
on one piece of data.

335

336 Intermediate C Programming

21.2 Multi-Tasking

If parallel programs take advantage of multiple cores, then does this mean that parallel
programs cannot run on single-core processors? Yes, they can. The operating system is be-
tween the program and the cores, and provides an abstraction so that programs do not need
to be too concerned about the number of cores. For example, how many computer programs
are running simultaneously on your computer right now? There could be a web browser, a
text editor, a music player, instant messaging, and many other programs, including various
system services.

How many cores does your computer have? One? Two? Four? It is the operating system
that makes sure everything works—every program gets a turn to execute some of its code
in a timely fashion. Specifically, the operating system gives each program a short time
interval (usually several milliseconds) in which one or several cores execute the program
and the program makes some progress. After this interval, the operating system suspends
the program, and then allows another program to run. By giving every program a short
time interval to make some progress, the operating system gives the user the impression that
every program makes progress. If a processor has only one core, then only one program can
run at any given moment. This is called multi-tasking and is analogous to several children
sharing a slide in a playground. Even though only one person can slide down at any moment
(for safety), everyone gets a turn, and everyone enjoys the slide.

In order to improve the overall performance, the operating system may change the
lengths of the time intervals depending on what particular programs are doing. For example,
when a program wants to read data from a file, this program has to wait for the disk to
get the data. During this waiting period, the operating system shortens the program’s time
interval so that another program can use the processor. If a program waits for a user to
enter something on the keyboard, then the operating system also shortens the program’s
time interval while the program is waiting for the user’s input. Shortened intervals also
occur when a program is waiting on data from the network. Because the lengths of the time
intervals can change, it is difficult to predict exactly which program is executing at any
given moment of time.

21.3 POSIX Threads

Threading is one way to write parallel programs. Each thread in a program may execute
the code in parallel. A sequential program can be thought of as having a single thread of
execution. Parallel programs have two or more threads. This book uses POSIX threads, also
called pthread. POSIX stands for Portable Operating System Interface and it is a standard
that most operating systems support.

A typical multi-thread program starts with only one thread, called the main thread or the
first thread. The main thread creates one or several threads by calling the pthread create

function. This function requires four arguments:
1. The first argument is an address of a structure called pthread t. This is a structure

defined in pthread.h and it stores information about the newly created thread. You do
not need to know precisely what information the pthread library stores in pthread t.
Pthreads needs to manage some data on each thread of execution, and this data is

Parallel Programming Using Threads 337

stored in pthread t. This is similar to the FILE pointer: it stores some information
about an opened file.

2. The second argument is the address of a structure called pthread attr t. This spec-
ifies optional attributes for initializing a thread. If this argument is NULL, the thread
is initialized with default values.

3. The third argument is the name of a function. Section 9.2 explains how to use a
function as an argument to another function (qsort). There are some differences
here. For pthread create, the function’s return type must be void* and the function
takes precisely one argument. For qsort, it expects a function that returns an integer
and the function takes two pointers as arguments.

4. The fourth argument is the argument passed to the function specified in the third
argument.

After calling pthread create, a new thread (the second thread) is created and executes
the function specified in the third argument. The main thread and the new thread may
now run simultaneously (if there are two or more cores). If the program equally divides its
tasks between the first thread and the second thread, then the program can be about twice
as fast. On a single core machine, the two threads take turns and there is no performance
improvement.

The main thread should call pthread join on the second thread before terminating.
This function causes the calling (main) thread to wait until another thread terminates.
After the call to pthread join, there will only be one thread executing. If the main thread
does not wait for the second thread to finish, and the main thread terminates, then the
second thread will also be terminated. Below is a code listing for a simple program creating
one thread:

// thread1.c1

#include <pthread.h>2

#include <stdio.h>3

#include <stdlib.h>4

void * printHello(void *arg)5

{6

int * intptr = (int *) arg;7

int val = * intptr;8

printf("Hello World! arg = %d\n", val);9

return NULL;10

}11

int main (int argc , char *argv [])12

{13

pthread_t second;14

int rtv; // return value of pthread_create15

int arg = 12345;16

rtv = pthread_create (& second , NULL ,17

printHello , (void *) & arg);18

i f (rtv != 0)19

{20

printf("ERROR; pthread_create () returns %d\n", rtv);21

return EXIT_FAILURE;22

}23

rtv = pthread_join(second , NULL);24

i f (rtv != 0)25

{26

338 Intermediate C Programming

printf("ERROR; pthread_join () returns %d\n", rtv);27

return EXIT_FAILURE;28

}29

return EXIT_SUCCESS;30

}31

To compile this file into an executable program, we need to add -lpthread at the end
of the gcc command in this way:

$ gcc -g -Wall -Wshadow thread1.c -o thread1 -lpthread

This will link the pthread library to the executable program. When the program runs,
it prints the following output:

Hello World! arg = 12345

How does this program work? Let’s start at line 17 where pthread create is called.
The first argument is the address of a pthread t object created at line 14. The second
argument is NULL, and thus the thread is initialized with the default attributes. The third
argument is printHello. This is the address of the printHello function and pthread will
use this address to execute printHello of lines 4 to 10. The function’s return type must be
void *. The function must take one and only one argument and the type must be void *.
The fourth argument to pthread create is the argument that pthreads will in turn pass
to printHello when it calls this function. In this case, it is the address of an integer. If
pthread create succeeds, it returns zero. This indicates that the thread is created normally.
There are now two parallel threads in the program.

Inside printHello, the argument is cast to the correct type. Since line 18 uses the
address of an integer, the correct type is int *. Line 7 dereferences the address to get the
integer value. The printHello has no useful information to return so it returns NULL at line
9. The main thread calls pthread join to wait for the second thread to finish executing
before main terminates. If pthread join is not called, the main thread may terminate and
destroy the second thread before it gets a chance to print anything to the terminal.

21.4 Subset Sum

The subset sum problem is commonly encountered when studying cryptography. This
problem can be defined in different ways. Here is one definition. Consider a positive integer
k and a set of positive integers A = {a1, a2, ..., an}. Is it possible to find a subset B =
{b1, b2, ..., bm} ⊂ A such that k = b1 + b2 + ... + bm? Note that B cannot be the empty set
because k > 0. Since B is a subset of A, m must be less than or equal to n.

Consider the following example: A = {19, 10, 2, 9, 8} and k = 20. We have k = 10+2+8,
and thus there is a solution. Consider another example, A = {3, 5, 1, 2, 6} and k = 21. In
this case, the sum of all elements in A is 3 + 5 + 1 + 2 + 6 = 17, which is smaller than
k. Hence there is no solution. Sometimes multiple solutions are possible. For example, if
A = {1, 2, 3, 4, 5} and k is 7. Here we have the solutions: {1, 2, 4}, {3, 4}, and {2, 5}.

This problem asks you to write a program that counts the number of subsets whose sum
equals to the value of k. For a set of n elements, there are 2n subsets. This program restricts
the size of sets to 31 so that the number of subsets does not exceed 231.

Parallel Programming Using Threads 339

21.4.1 Generate Test Cases

As always, it is good practice to think about testing a program before it is written. In
this case we can write a program that generates test cases. This generator program takes
three command-line arguments:
• argv[1] is the number of elements. For this program, the value must be between 3

and 31.
• argv[2] is ”1” if the set is valid, and ”0” if the set is invalid. A valid set must contain

distinct positive integers. If an element is zero or negative, then the set is invalid. If
two or more elements have the same value, then the set is also invalid.
• argv[3] is ”1” if there is a solution for the test case. It is ”0” if there is no solution.
The program first generates an array of positive integers. The values are guaranteed to

be distinct because each element is larger than the previous element. If we want to generate
an invalid set, then the program chooses one of the two possibilities: Either it makes an
element zero or negative, or it makes two elements have the same value. If the set is invalid,
then the value of k is irrelevant and the generator chooses a random number for k.

For a valid set with a solution, k is the sum of some elements. Each element has a one-
third chance of being part of the sum equal to k. It is possible that no element is added. In
this case, k will be zero and the generator program corrects this situation by setting k to
the first element. If the set is valid but the generator creates a test case with no solution,
then k is greater than the sum of all elements. The output or the generator program prints
k first, and then the set elements one after another. The complete generator program is
shown below:

// testgen.c1

#include <stdio.h>2

#include <stdlib.h>3

#include <time.h>4

// command line arguments5

// argv [1]: the number of elements6

// must be between 3 and 317

// argv [2]: "1" the array is valid8

// "0" the array is invalid9

// argv [3]: "1" if there is a solution10

// "0" if there is no solution11

void swap(int * a, int * b)12

{13

int t = * a;14

* a = * b;15

* b = t;16

}17

void shuffleArray(int * arr , int num)18

{19

int ind1 , ind2 , ind3;20

for (ind1 = 0; ind1 < 1000; ind1 ++)21

{22

ind2 = rand() % num;23

ind3 = rand() % num;24

swap(& arr[ind2], & arr[ind3]);25

}26

}27

void printArray(int * arr , int num , int kval)28

340 Intermediate C Programming

{29

printf("%d\n", kval);30

int ind;31

for (ind = 0; ind < num; ind ++)32

{33

printf("%d\n", arr[ind]);34

}35

}36

int main(int argc , char ** argv)37

{38

i f (argc < 4)39

{40

return EXIT_FAILURE;41

}42

int numInt = (int) strtol(argv[1], NULL , 10);43

int isValid = (int) strtol(argv[2], NULL , 10);44

int hasSol = (int) strtol(argv[3], NULL , 10);45

i f ((numInt < 3) || (numInt > 31))46

{47

return EXIT_FAILURE;48

}49

i f ((hasSol != 0) && (hasSol != 1))50

{51

return EXIT_FAILURE;52

}53

i f ((hasSol != 0) && (hasSol != 1))54

{55

return EXIT_FAILURE;56

}57

srand(time(NULL)); // set the seed58

int kval = 0;59

int * arr = malloc(s i z eo f (int) * numInt);60

int ind;61

// the array is increasing and all elements are distinct62

arr [0] = rand() % 100;63

for (ind = 1; ind < numInt; ind ++)64

{65

arr[ind] = arr[ind - 1] + (rand() % 10000) + 1;66

}67

i f (isValid == 0)68

{69

i f ((rand() % 2) == 0)70

{71

// make two elements the same72

arr[numInt - 1] = arr [0];73

}74

e l se75

{76

// make an element negative or zero77

arr[0] = - (rand() % 10000);78

}79

Parallel Programming Using Threads 341

// kval irrelevant when the array is invalid80

kval = rand() % 10000 + 1;81

}82

e l se83

{84

for (ind = 0; ind < numInt; ind ++)85

{86

i f (hasSol == 0)87

{88

// kval > sum of all elements89

kval += arr[ind] + 1;90

}91

e l se92

{93

i f ((rand() % 3) == 1)94

{95

kval += arr[ind];96

}97

}98

}99

i f (kval == 0) // only if hasSol is 1100

{101

kval = arr [0];102

}103

}104

shuffleArray(arr , numInt);105

printArray(arr , numInt , kval);106

free(arr);107

return EXIT_SUCCESS;108

}109

It is important to understand the value of a test generator. Writing test generators is
often necessary. Creating test cases by hand is really too much work. The main problem of
hand-generated tests is that only a few cases can be produced. As a result, the tests often
miss some important cases.

21.4.2 Sequential Solution

One obvious solution to the subset sum problem is to enumerate each subset of A and
then check each to see if the sum of the elements is k. This will take exponential time since
a set of size n has 2n subsets. The number of possible subsets becomes really large. For
example, a set of size 400 has 2400 subsets; this is more than the number of atoms in the
observable universe.

There is no known “quick” way of solving the subset sum problem. In computer science,
“quick” usually means that there is a polynomial-time algorithm that solves the problem. A
polynomial-time algorithm is an algorithm whose execution time is bounded by a polynomial
function of the input size. For example, if we are searching a linked list for a given value,
then we may need to traverse the entire list. If the list has n elements (the input data) then
the execution time of the search is bounded by a polynomial function of n. For a polynomial
of degree p, the largest term is np. For any constant p > 1, the following statement is true:

342 Intermediate C Programming

lim
n→∞

2n

np
=∞. (21.1)

This means that the exponential function eventually grows faster than any polynomial.
There is always a value of n such that 2n is larger than np, no matter what p is. This can
be proved by using the L’Hospital’s Rule from calculus.

This section asks you to write a program that counts the number of subsets whose sums
are equal to the given value k. Instead of finding a sophisticated algorithm, the section uses
a simple solution that enumerates all subsets (excluding the empty set). The program must
read the value of k and then the set’s elements from a file. After reading the data from the
file, the program checks whether the set is valid. The set is invalid if any element is zero
or negative, or if two elements have the same value. If the set is invalid, then the program
does not attempt to solve the subset sum problem.

If the set is valid, then the program generates all possible subsets of the given set. This
program first calculates the number of possible subsets. If a set has n elements, then there
are 2n subsets including the empty set. If each subset is given a number, then the subsets
are numbers between 0 and 2n − 1 inclusively. The empty set is not considered because
k 6= 0, and thus we only need to consider the subsets labeled 1 to 2n − 1. Note that since
each number corresponds to a subset, and we will check to total sum of the numbers in that
subset, we have each number corresponding to a subset sum. The following table explains
how the numbers are related to the subset sums:

Value Sum
1 a1
2 a2
3 a1 + a2
4 a3
5 a1 + a3
6 a2 + a3
7 a1 + a2 + a3
8 a4
...

...
2n − 1 a1 + a2 + a3 + ... + an

The test generator is restricted to at most 31 elements so that 2n can fit in a four-byte
integer. This following is a sample implementation of the sequential program as described
above. First is the main function:

// main.c1

#include <pthread.h>2

#include <stdio.h>3

#include <stdlib.h>4

#include "subsetsum.h"5

int main (int argc , char *argv [])6

{7

// read the data from a file8

i f (argc < 2)9

{10

printf("Need input file name\n");11

return EXIT_FAILURE;12

}13

FILE * fptr = fopen(argv[1], "r");14

Parallel Programming Using Threads 343

i f (fptr == NULL)15

{16

printf("fopen fail\n");17

return EXIT_FAILURE;18

}19

int numInt = countInteger(fptr);20

// go back to the beginning of the file21

fseek (fptr , 0, SEEK_SET);22

int kval; // the value equal to the sum23

i f (fscanf(fptr , "%d", & kval) != 1)24

{25

printf("fscanf error\n");26

fclose(fptr);27

return EXIT_FAILURE;28

}29

numInt --; // kval is not part of the set30

int * setA = malloc(s i z eo f (int) * numInt);31

int ind = 0;32

for (ind = 0; ind < numInt; ind ++)33

{34

int aval;35

i f (fscanf(fptr , "%d", & aval) != 1)36

{37

printf("fscanf error\n");38

fclose(fptr);39

return EXIT_FAILURE;40

}41

setA[ind] = aval;42

}43

fclose (fptr);44

i f (isValidSet(setA , numInt) == 1)45

{46

printf("There are %d subsets whose sums are %d\n",47

subsetSum(setA , numInt , kval), kval);48

}49

e l se50

{51

printf("Invalid set\n");52

}53

free(setA);54

return EXIT_SUCCESS;55

}56

This main function calls several other functions that are declared in this header file.

// subsetsum.h1

#ifndef SUBSETSUM_H2

#define SUBSETSUM_H3

#include <stdio.h>4

int subsetEqual(int * setA , int sizeA , int kval ,5

unsigned int code);6

// return 1 if the subset expressed by the code sums to kval7

344 Intermediate C Programming

// return 0 if the sum is different from kval8

int subsetSum(int * setA , int sizeA , int kval);9

// the number of subsets in setA equal10

int isValidSet(int * setA , int sizeA);11

// valid if elements are positive and distinct12

// return 1 if valid , 0 if invalid13

int countInteger(FILE * fptr);14

// how many integers in a file15

// fptr must not be NULL , checked by the caller16

#endif17

The functions isValid and countInt should be straightforward:

// isvalid.c1

#include <stdio.h>2

int isValidSet(int * setA , int sizeA)3

// valid if every element is positive and distinct4

// return 1 if valid , 0 if invalid5

{6

int ind1;7

int ind2;8

for (ind1 = 0; ind1 < sizeA; ind1 ++)9

{10

i f (setA[ind1] <= 0)11

{12

return 0;13

}14

for (ind2 = ind1 + 1; ind2 < sizeA; ind2 ++)15

{16

i f (setA[ind1] == setA[ind2])17

{18

return 0;19

}20

}21

}22

return 1;23

}24

// countint.c1

#include <stdio.h>2

int countInteger(FILE * fptr)3

{4

int numInt = 0; // how many integers5

int value;6

while (fscanf(fptr , "%d", & value) == 1)7

{8

numInt ++;9

}10

return numInt;11

}12

The function subsetSum counts the number of subsets:

Parallel Programming Using Threads 345

// sequential.c1

#include "subsetsum.h"2

int subsetSum(int * setA , int sizeA , int kval)3

{4

unsigned int maxCode = 1;5

unsigned int ind;6

for (ind = 0; ind < sizeA; ind ++)7

{8

maxCode *= 2;9

}10

int total = 0;11

for (ind = 1; ind < maxCode; ind ++)12

{13

total += subsetEqual(setA , sizeA , kval , ind);14

}15

return total;16

}17

The function subsetEqual determines whether a specific subset sums to the value of k:

// subsetequal.c1

#include <stdio.h>2

int subsetEqual(int * setA , int sizeA , int kval ,3

unsigned int code)4

{5

int sum = 0;6

int ind = 0;7

unsigned int origcode = code;8

while ((ind < sizeA) && (code > 0))9

{10

i f ((code % 2) == 1)11

{12

sum += setA[ind];13

}14

ind ++;15

code >>= 1;16

}17

i f (sum == kval)18

{19

printf("equal: sum = %d, code = %X\n",20

sum , origcode);21

return 1;22

}23

return 0;24

}25

21.4.3 Multi-Threaded Solution

The sequential program can be parallelized in a variety of ways. We need to figure out
how to distribute the work evenly across several threads. Each thread can be responsible for
checking the sums of some of the subsets. To be more precise, suppose a set has n elements

346 Intermediate C Programming

and t threads are used to solve the subset sum program (excluding the main thread). One
solution to distribute the work is to have the first thread check the subsets between 1 and
b 2nt c. The second thread simultaneously checks the subsets between b 2nt c+ 1 and 2×b 2nt c.
It is important to handle the last thread with caution. If t is not a factor of 2n, then the
program must ensure that the thread includes the last set (value is 2n − 1).

The new subsetSum function contains three steps:
1. Create an object as the argument to each thread. This object contains multiple at-

tributes to a function. The attributes are put together into a single structure because
a thread can take only one argument. In this case, each object specifies the range
of subsets checked by the individual thread. The object includes (i) the range of the
subsets to be examined, (ii) the set, (iii) the set’s size, (iv) the value of k, and (v)
the number of subsets whose sums equal to k. It is necessary to give each thread all
relevant information because using global variables is strongly discouraged.

2. Create the threads. Each thread checks some subsets and computes the number of
subsets whose sums equal to k.

3. The main thread waits for every thread to complete and then adds the number subsets
that each thread reports.

The checkRange function is used by each thread, and is an argument of pthread create.
This is a SIMD program because the same function is used in every thread. Below is the
code listing for the subsetSum function using threads:

// threaddata.h1

#ifndef THREADDATA_H2

#define THREADDATA_H3

typedef struct4

{5

unsigned int minval;6

unsigned int maxval;7

int numSol;8

int * setA;9

int sizeA;10

int kval;11

} ThreadData;12

#endif13

// parallel.c1

#include <pthread.h>2

#include <stdio.h>3

#include <stdlib.h>4

#include "threaddata.h"5

#include "subsetsum.h"6

#define NUMBER_THREAD 167

void * checkRange(void * range)8

{9

ThreadData * thd = (ThreadData *) range;10

unsigned int minval = thd -> minval;11

unsigned int maxval = thd -> maxval;12

// printf (" minval = %d, maxval = %d\n", minval , maxval);13

unsigned int ind;14

// caution: need to use <= for max15

for (ind = minval; ind <= maxval; ind ++)16

{17

Parallel Programming Using Threads 347

thd -> numSol +=18

subsetEqual(thd -> setA , thd -> sizeA ,19

thd -> kval , ind);20

}21

return NULL;22

}23

24

int subsetSum(int * setA , int sizeA , int kval)25

// This function does not allocate memory (malloc)26

// No need to free memory if failure occurs27

{28

29

pthread_t tid[NUMBER_THREAD];30

ThreadData thd[NUMBER_THREAD];31

// set the values for the thread data32

unsigned int maxCode = 1;33

unsigned int ind;34

for (ind = 0; ind < sizeA; ind ++)35

{36

maxCode *= 2;37

}38

int total = 0;39

unsigned int minval = 1;40

unsigned int size = maxCode / NUMBER_THREAD;41

unsigned int maxval = size;42

for (ind = 0; ind < NUMBER_THREAD - 1; ind ++)43

{44

thd[ind]. minval = minval;45

thd[ind]. maxval = maxval;46

thd[ind]. numSol = 0;47

thd[ind].setA = setA;48

thd[ind]. sizeA = sizeA;49

thd[ind].kval = kval;50

minval = maxval + 1;51

maxval += size;52

}53

// ind should be NUMBER_THREAD - 1 now54

// handle the last thread differently because55

// maxCode may not be a multiple of NUMBER_THREAD56

thd[ind]. minval = minval;57

thd[ind]. maxval = maxCode - 1; // remember -158

thd[ind]. numSol = 0;59

thd[ind].setA = setA;60

thd[ind]. sizeA = sizeA;61

thd[ind].kval = kval;62

63

// create the threads64

for (ind = 0; ind < NUMBER_THREAD; ind ++)65

{66

int rtv;67

rtv = pthread_create (& tid[ind], NULL ,68

348 Intermediate C Programming

checkRange , (void *) & thd[ind]);69

i f (rtv != 0)70

{71

printf("ERROR: pthread_crate () fail\n");72

}73

}74

75

// wait for the threads to complete76

for (ind = 0; ind < NUMBER_THREAD; ind ++)77

{78

int rtv;79

rtv = pthread_join(tid[ind], NULL);80

i f (rtv != 0)81

{82

printf("ERROR; pthread_join () returns %d\n", rtv);83

return EXIT_FAILURE;84

}85

total += thd[ind]. numSol;86

}87

return total;88

}89

There are a few details worth noting. First, the ranges checked by the threads must be
mutually exclusive. If one subset is checked by two or more threads and this subset’s sum
happens to equal to k, then this subset is counted multiple times and the total is wrong.
Second, the threads combined should check all subsets (excluding the empty set). Also,
checkRange needs to be consistent with the ranges assigned in subsetSum. In particular, if
checkRange uses <= maxval, then the maximum value checked by the last thread must be
maxCode - 1, not maxCode. You may notice that the individual threads share some data.
In each object, the attribute setA is a pointer to an array. This means that every thread
uses the same piece of memory. This is acceptable because the threads do not modify the
array. The other attributes are unique to each thread, because the object stores unshared
attributes (the int and unsigned int data).

21.5 Interleaving the Execution of Threads

The threads in the subset sum program shared a common array setA. Being able to share
memory between different threads is a characteristic of threaded programming; however, it
can sometimes be problematic. In the subset sum case, the threads never modify the shared
memory (i.e., setA), but only read the elements from the array. The only memory that the
threads modify is the attribute numSol, and each thread has a unique copy of this variable.
The main thread waits until all the threads are complete by calling pthread join on each
thread. Then the main thread adds the numSol values. The threads never intend to modify
any piece of shared memory. What happens if threads share memory that may be read and
written? The following listing is a simple and instructive example:

// outsync.c1

#include <pthread.h>2

#include <stdio.h>3

Parallel Programming Using Threads 349

#include <stdlib.h>4

#define NUMBER_THREAD 165

void * threadfunc(void *arg)6

{7

int * intptr = (int *) arg;8

while (1)9

{10

(* intptr) ++;11

(* intptr) --;12

i f ((* intptr) != 0)13

{14

printf("value is %d\n", * intptr);15

return NULL;16

}17

}18

return NULL;19

}20

21

int main (int argc , char *argv [])22

{23

pthread_t tid[NUMBER_THREAD];24

int rtv; // return value of pthread_create25

int ind;26

int arg = 0;27

for (ind = 0; ind < NUMBER_THREAD; ind ++)28

{29

rtv = pthread_create (& tid[ind], NULL ,30

threadfunc , (void *) & arg);31

i f (rtv != 0)32

{33

printf("pthread_create () fail %d\n", rtv);34

return EXIT_FAILURE;35

}36

}37

for (ind = 0; ind < NUMBER_THREAD; ind ++)38

{39

rtv = pthread_join(tid[ind], NULL);40

i f (rtv != 0)41

{42

printf("pthread_join () fail %d\n", rtv);43

return EXIT_FAILURE;44

}45

}46

return EXIT_SUCCESS;47

}48

This program creates some threads that share the address of the same integer variable
(arg in main). Each thread increments and decrements the value stored at that address
(i.e., the integer). If a thread finds that the value is not zero, then it prints a message and
terminates. Otherwise the thread will continue indefinitely. Can the threads ever print the
message? Will any thread return NULL and terminate? There is no good way to answer this

350 Intermediate C Programming

question, because the execution of this program is unpredictable. When we executed this
program three different times, the program printed three different values:

value is 1

value is -1

value is 0

How can this be possible? If a thread increments and decrements the value before check-
ing, how can it be possible that the value is anything other than zero? It can be even more
surprising when we see the output that includes:

value is 0

This makes no sense because the program should print the message only if the value is
non-zero, based on the condition at line 12.

i f ((* intptr) != 0)12

The program prints the value only when *intptr is not zero. However, the program
ends up printing zero. What is wrong with this program? To understand what this means,
we must understand this statement: the operating system may change the lengths of the
time intervals. The operating system gives each thread a short time interval to execute
some code. If the program has multiple threads, then each thread gets some time intervals.
Due to many reasons, the operating system may decide to suspend a thread (or a program)
so that another thread (or another program) can run and make progress. There is no
guarantee when a thread is suspended. The operating system needs to manage all programs
and threads so that no single program or thread can occupy the processor for too long. If
a processor has multiple cores, two or more threads may be executing simultaneously. It
is possible that one thread is executing the machine instructions for line 10, while another
thread is executing the machine instructions for line 12. The microsecond differences in
what hundreds of different programs are doing at different times makes it impossible in
general to predict what any given thread is doing at any given time.

Let us look deeper into how this relates to the program. How specifically does this
make the value of * intptr anything other than zero after the increment and decrement
operations? What happens when the program executes this statement?

(* intptr) ++;10

Because intptr stores arg’s address, this statement increments the value stored in arg. To
execute this statement, the computer must do the following:

1. Read the value of arg.
2. Increment the value.
3. Write the new value to arg.
Please note that arg’s value is changed only at the last step. During the first and the

second steps, the value is stored in a temporary location (called register) inside the processor.
Threads may share memory space but they do not share registers. The operating system may
suspend a thread anywhere in these three steps. The following diagram shows one possible
interleaving of the execution of two threads. In this diagram, time progresses downwards.
We use - to indicate that a thread is currently suspended. If thread 1 is suspended right
after arg increments, then the value is 1 when thread 2 reads it. As a result, when thread
2 checks the value, it is not zero and it prints the message. Table 21.1 explains why the
program may print the value 1.

If we change the ordering, Table 21.2 shows why it is possible to see the value 0 printed.
In this scenario, thread 2 is suspended after it checks arg’s value and it is one. When

Parallel Programming Using Threads 351

thread 1 thread 2 arg’s value
read arg - 0
increment arg - 0
write arg - 1
- read arg 1
- increment arg 1
- write arg 2
- read arg 2
- decrement arg 2
- write arg 1
- check arg’s value 1
- print arg’s value 1

TABLE 21.1: Interleaving scenario 1.

thread 1 thread 2 arg’s value
read arg - 0
increment arg - 0
write arg - 1
- read arg 1
- increment arg 1
- write arg 2
- read arg 2
- decrement arg 2
- write arg 1
- check arg’s value 1
read arg - 1
decrement arg - 1
write arg - 0
- print arg’s value 0

TABLE 21.2: Interleaving scenario 2.

thread 2 prints the value, it has already been changed to 0. Due to the subtle interleaving
of the threads, it is possible that arg’s value is nonzero when the condition is checked and
is 0 when the value is printed.

Is it possible for the program to print 2? Yes. This is one scenario: Thread 1 increments
and decrements arg and arg is 0 when it is suspended just before the if statement. The
thread enters the if statement, but is suspended before it does any printing. Now thread 2
increments arg and is then suspended. The value is now 1. Thread 3 increments arg and the
thread is then suspended. The value is 2 now. Thread 1 gets another turn on the processor,
and prints the value of arg and it is 2. If the threads always increment before decrementing,
how is it possible to print −1? Consider the scenario in Table 21.3.

How contrived is this example? Do scenarios like this happen when solving real world
problems? It happens almost always.

We can find analogous examples in the real world. For example, when several people try
to purchase tickets for the same flight, the shared variable is the total number of tickets
sold for the flight. If only one seat is available and several people buy the ticket at once,
then the flight is oversold (also called overbooked). How can it be possible to oversell one
flight? Suppose two customers check the flight at almost the same time (reading the shared
variable). The flight still has one seat available and both buy the tickets. Now, the flight

352 Intermediate C Programming

thread 1 thread 2 arg’s value
read arg - 0
increment arg - 0
write arg - 1
read arg - 1
decrement arg - 1
- read arg 1
- increment arg 1
- write arg 2
write arg - 0
- read arg 0
- decrement arg 0
- write arg −1
- check arg’s value −1
- print arg’s value −1

TABLE 21.3: Interleaving scenario 3.

is oversold. Airline companies often do this on purpose because some people buy tickets
but never show up for their flight. It can save money, including the customer, if airlines do
this. Airlines can make reasonable accommodations in the unlikely scenario that everyone
actually checks in for the flight. One common solution is to give a voucher to a volunteer
for taking a later flight.

In some other real world cases, we need a solution that strictly prevents this type of
problem occurring altogether. Consider the following scenario: Two people share a bank
account and the current balance is $900. One day, they go to two ATMs (automatic teller
machine) side-by-side. Each withdraws $100 simultaneously. The two people stand next
to each other and attempt to hit the keys on the ATMs at the same time. The correct
remaining balance should be $700. However, subtle interleaving could make the remaining
balance $800 as illustrated below:

Customer 1 Customer 2 Balance
read balance - $900
- read balance $900
subtract $100 - $900
- subtract $100 $900
write balance - $800
- write balance $800

The bank gives each customer $100 and the remaining balance is $800 so the bank loses
$100. No bank would allow this to happen.

How could the designers of threads allow this to happen? First, it is not a flaw in the
specification of threads. The source of the problem is that there is no simple way to predict
the order in which multiple threads execute their instructions. Thus it allows operating
systems to manage the computer resources more efficiently.

The solution to the problem is to prevent any interleaving of the withdrawal operations.
If two requests come in simultaneously, then one must wait until the other request finishes
in its entirety. The entire withdrawal operation is said to be atomic: it cannot be divided
into parts, i.e., it is irreducible. Threads would not be particularly useful if they did not
support atomic operations, and this is the topic of the next section. Atom comes from the
Greek word atomon which means uncuttable. Such irreducible components of matter have
been hypothesized since at least the beginning of recorded history. Now we know that an

Parallel Programming Using Threads 353

atom can be divided to electrons, neutrons, and protons. Nevertheless, we still use “atomic
operation” to describe a computer operation that cannot be divided.

21.6 Thread Synchronization

The previous section described a problem in multi-threaded programs. The problem
occurs because there is no good way to predict the order in which multiple threads may
read and modify the same shared variable. There is no problem when threads do not share
data. There is no problem when they share read-only data. For the subset sum problem,
the threads share the array but it is read-only. No thread modifies the array and there is no
problem. The problem only occurs when threads are writing to, or reading from and writing
to, the same piece of memory, and the operations are interleaved in specific ways. When
we test the program, the problem will occur sometimes, and frustratingly, will not occur at
other times. This adds a significant challenge to testing threaded programs. The only way
to be sure is to use a clear mind to reason logically about how multi-thread programs work.

Threads can specify which operations must be atomic. An atomic operation is called
a critical section. Critical sections cannot interleave. In the previous example, the critical
section should include the code where the variable is read or written. If the threads takes
turns to increment and decrement the variable atomically, then the value will always remain
zero. Thus, the question becomes how to ensure that the threads take turns executing the
critical section of code. Only one thread can start a critical section at a time, and once
it starts, no other thread can enter the critical section until it finishes. The threads must
be synchronized. Synchronization restricts how threads’ operations may interleave. This is
achieved by using a mutually exclusive lock, also called mutex lock or mutex for short.

Consider an analogy of a library study room with the following rules:
• The room has a lock and only one key.
• Before a student enters the room, the student must obtain the key from the library’s

reception desk.
• Only one student can enter the room. The student must keep the key while inside the

room.
• When the student enters the room, the student must immediately lock the door.
• When the student leaves the room, the door is unlocked and the key is returned to

the library’s reception desk.
• If a student wants to use the study room but does not have the key, the student has

to wait.
A mutex comes with a pair of lock and unlock statements. The code between this pair

of statements is the critical section. A mutex lock is very similar to the lock of the library’s
study room.
• Before a thread enters the critical section, the thread must obtain the key from the

operating system.
• Only one thread can enter the critical section. The thread must lock the door and

keep the key while running the code in the critical section.
• When the thread leaves the critical section, the thread unlocks the door and returns

the key to the operating system.
• If a thread wants to enter the critical section but does not have the key, then the

thread has to wait for the key.

354 Intermediate C Programming

The following example shows how to lock and unlock a mutex in order to create a critical
section of code.

// sync.c1

#include <pthread.h>2

#include <stdio.h>3

#include <stdlib.h>4

#define NUMBER_THREAD 165

typedef struct6

{7

int * intptr;8

pthread_mutex_t * mlock;9

} ThreadData;10

11

void * threadfunc(void *arg)12

{13

ThreadData * td = (ThreadData *) arg;14

int * intptr = td -> intptr;15

pthread_mutex_t * mlock = td -> mlock;16

while (1)17

{18

int rtv;19

rtv = pthread_mutex_lock(mlock); // lock20

// beginning critical section21

i f (rtv != 0)22

{23

printf("mutex_lock fail\n");24

return NULL;25

}26

(* intptr) ++;27

(* intptr) --;28

i f ((* intptr) != 0)29

{30

printf("value is %d\n", * intptr);31

return NULL;32

}33

// end critical section34

rtv = pthread_mutex_unlock(mlock); // unlock35

i f (rtv != 0)36

{37

printf("mutex_unlock fail\n");38

return NULL;39

}40

}41

return NULL;42

}43

44

int main (int argc , char *argv [])45

{46

pthread_mutex_t mlock;47

pthread_mutex_init (& mlock , NULL);48

Parallel Programming Using Threads 355

int val = 0;49

ThreadData arg;50

arg.intptr = & val;51

arg.mlock = & mlock;52

pthread_t tid[NUMBER_THREAD];53

int rtv; // return value of pthread_create54

int ind;55

for (ind = 0; ind < NUMBER_THREAD; ind ++)56

{57

rtv = pthread_create (& tid[ind], NULL ,58

threadfunc , (void *) & arg);59

i f (rtv != 0)60

{61

printf("pthread_create () fail %d\n", rtv);62

return EXIT_FAILURE;63

}64

}65

for (ind = 0; ind < NUMBER_THREAD; ind ++)66

{67

rtv = pthread_join(tid[ind], NULL);68

i f (rtv != 0)69

{70

printf("pthread_join () fail %d\n", rtv);71

return EXIT_FAILURE;72

}73

}74

pthread_mutex_destroy (& mlock);75

return EXIT_SUCCESS;76

}77

The program has a structure ThreadData that includes two pointers: one for the integer’s
address (i.e., the shared memory) and the other for the mutex’s address. For a critical section
to work as intended, all the threads must attempt to lock and unlock the same mutex.
Hence a pointer to the mutex is passed in ThreadData. If each thread has its own mutex,
then this would be like the library having a key available for every student, even though
there is only one study room. All of them can enter the room and this will create problems.

The critical section includes the code that reads and writes the shared variable. Each
thread obtains the lock by calling pthread mutex lock right after entering the while block.
If the thread cannot lock the mutex (because some other thread is in the critical section),
then that thread will be waiting at pthread mutex lock until the thread can obtain a lock.
The mutex is unlocked by calling pthread mutex unlock at the end of the while block.

The main function creates a single ThreadData object shared by all threads. Before call-
ing pthread mutex lock or pthread mutex unlock, the lock must be initialized by calling
pthread mutex init. This is done in the main function. What is the output of this pro-
gram? Nothing. The if condition in threadfunc is never true and nothing is printed. This
means that all threads keep running indefinitely.

There is much more to say about critical sections of code, and thread synchronization.
This chapter is only an introduction, and covers the most important concepts. Writing
correct multi-threaded programs can be challenging, and developing better tools and pro-
gramming languages for this purpose is an ongoing topic of research. When writing multi-
threaded programs, it is important to identify critical sections and make them atomic.

356 Intermediate C Programming

Failure to do so will result in unpredictable and difficult-to-reproduce bugs. It is usually
difficult to test and detect synchronization problems. You must think very carefully before
writing the programs.

21.7 Amdahl’s Law

A typical multi-thread program starts with one thread (the main thread). This thread
may do some work (such as reading data from a file) before creating more threads. Then,
multiple threads are created for computing the results. The results from multiple threads
are later combined into the final result. If a program is structured this way, then there is an
obvious problem: The initialization and the finalization steps are sequential and can become
the bottleneck.

Consider the following scenario. A sequential (single threaded) program takes 100 sec-
onds. The program runs on a computer with an infinite number of cores. The initialization
and the finalization steps account for 1% of the execution time. The remaining 99% of ex-
ecution time is divided between two threads. What is the performance improvement of the
two-threads solution? The new execution time is 1 + 99

2 = 50.5 seconds. Now suppose that
the remaining 99% of execution time is divided between three threads. The execution time
becomes 1 + 99

3 = 34 seconds.
What is the execution time when 99 threads are used? 1 + 99

99 = 2 seconds. How about
990 threads? 1 + 99

990 = 1.1 seconds. The reduction in execution is less than 50% (2 seconds
→ 1.1 seconds) after increasing the number of threads by an order of magnitude. In fact, if
the program uses an infinite number of threads, the execution is still 1 second.

What does this mean? The initialization and the finalization steps seem like a small por-
tion of the total execution for the single-thread program. They dominate the total execution
time as more and more threads are created. As more threads are used, the initialization
and the finalization steps become the bottleneck. The mathematical model for this is called
Amdahl’s Law. The model says that adding more threads has diminishing returns. In this
model, the total execution time becomes shorter as more threads are used. In reality, dou-
bling the number of threads rarely shortens the total execution time by half. Consider the
subset sum program again. We ran this program on a 32-core server using different num-
bers of threads. As the number of threads is increased from one to 32, the program’s total
execution time is reduced by 72%. Even though this is noticeable improvement, it is far
from the ideal improvement of (1− 1

32 = 97% reduction).
This chapter provides an introduction to the subject of parallel programming using

threads. You can find many books and courses about this important topic.

Part IV

Applications

357

This page intentionally left blankThis page intentionally left blank

Chapter 22

Finding the Exit of a Maze

22.1 Maze File Format . 359
22.2 Reading the Maze File . 361
22.3 The Maze Structure . 365
22.4 An Escape Strategy . 369
22.5 Implementing the Strategy . 370

22.5.1 canMove Function . 372
22.5.2 getOut Function . 372
22.5.3 Printing Visited Locations . 378

The following chapters use problems and reference solutions to integrate what you have
learned in earlier chapters. The first problem is to develop a computer algorithm that finds
a way to get out of a maze.

Imagine that you are an adventurer looking for hidden treasure in far-off caves, perhaps
the remnants of a lost civilization. Unfortunately you become trapped in an underground
maze. Only walls are visible, and you must develop a strategy to find the exit. You need to
write a program that finds the path from your current location to the exit.

22.1 Maze File Format

*********E***********

* * * * *

* ******* * * * * * *

* * s * * * * * * * *

* * * * *** * * * * *

* * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * *

TABLE 22.1: An example of a maze.

A maze is described by a file like the one shown in Table 22.1. This is the input to the
program. The characters represent:
• ’*’: brick
• ’ ’: (space) corridor

359

360 Intermediate C Programming

• ’E’: exit, i.e., the destination
• ’s’: starting location
The maze is divided into cells. Each cell is represented by a coordinate, (row, column).

Both rows and columns are referred to by integers, and are stored in a two-dimensional
array. As shown in Fig. 22.1, the top left corner is (0, 0), and not (1, 1). After moving
right one step, the coordinate becomes (0, 1). From (0, 1), moving down one step reaches
coordinate (1, 1). In C programs, array indexes start from zero. Thus making the upper left
corner (0, 0) simplifies the indexes. This is consistent with the convention used in computer
graphics.

(0, 0) (0, 1)

(1, 0)

(2, 0)

(3, 0)

(1, 1)

(0, 2)

(1, 2)

FIGURE 22.1: Coordinates (row, column). The upper left corner is (0, 0). Moving right
increases the column; moving down increases the row.

This chapter considers only valid mazes meeting the following properties:
• There is one and only one exit.
• There is one and only one starting location.
• There is one and only one route from the starting location to the exit.
• The maze is enclosed by bricks, except for the exit.
For the example in Fig. 22.1, the starting coordinate is (3, 4) and the exit is at (0, 9).

The output of the program is the path from the starting location to the exit, and is printed
in the following format:

Move to (3,3)

Move to (4,3)

Move to (5,3)

Move to (6,3)

Move to (7,3)

Move to (8,3)

Move to (9,3)

Move to (9,2)

Move to (9,1)

Move to (8,1)

Move to (7,1)

Move to (6,1)

Move to (5,1)

Move to (4,1)

Move to (3,1)

Move to (2,1)

Move to (1,1)

Move to (1,2)

Move to (1,3)

Move to (1,4)

Move to (1,5)

Move to (1,6)

Move to (1,7)

Move to (1,8)

Move to (1,9)

Move to (0,9)

Each line is one step and the two numbers give the coordinates that are stepped to.
The maze is very dark and you can see only one step in front of you. You do not know if a
corridor is a dead end until you reach the end. As a result, you may need to move backward
after discovering that a corridor is a dead end.

Consider the sequence of steps below:

Move to (5,19)

Move to (4,19)

Finding the Exit of a Maze 361

Move to (3,19)

Move to (2,19)

Move to (1,19)

Move to (2,19)

Move to (3,19)

Move to (4,19)

Move to (5,19)

Column 19 is the corridor at the right end of the maze. The top of this corridor is cell
(1, 19). After reaching this cell, you discover that it is a dead end. Then you have to turn
around and continue the search for the exit. This is called backtracking. As a result, the
coordinates (2, 19), (3, 19), . . . , are repeated showing backtracking.

This chapter provides an opportunity using several topics covered in this book so far:
• Reading data from a file.
• Creating a structure to hold the data of the maze.
• Allocating memory to store the maze cells.
• Using recursion to move around the maze and find the exit.

22.2 Reading the Maze File

A maze file uses four characters to represent bricks, corridors, the exit, and the starting
point. In addition, each line ends with a new line character (i.e., ’\n’). Fig. 22.1 is an example
of a maze file. The following program reads a maze file and prints some information about
it. The information includes:
• The number of rows and the number of columns in the maze. The maze must be

rectangular, i.e., all rows have the same number of columns.
• The location (row, column) of the exit.
• The location (row, column) of the starting point.
Please remember that the coordinate of the upper left corner is (0, 0). Moving right

increases the column, and moving down increases the row.

/* read a maze file , print the size , the coordinates of1

the exit and the starting point. */2

#include <stdio.h>3

#include <stdlib.h>4

int main(int argc , char * * argv)5

{6

FILE * fptr;7

int ch;8

int row = 0;9

int column = 0;10

int numberBrick = 0;11

int exitRow , exitColumn;12

int startRow , startColumn;13

int numberColumn;14

i f (argc < 2)15

{16

printf("Need to provide the file’s name.\n");17

362 Intermediate C Programming

return EXIT_FAILURE;18

}19

fptr = fopen(argv[1], "r");20

i f (fptr == NULL)21

{22

printf("fopen fail.\n");23

return EXIT_FAILURE;24

}25

numberColumn = 0;26

do27

{28

ch = fgetc(fptr);29

switch (ch)30

{31

case ’*’:32

numberBrick ++;33

break;34

case ’E’:35

exitRow = row;36

exitColumn = column;37

break;38

case ’s’:39

startRow = row;40

startColumn = column;41

break;42

}43

i f (ch != EOF)44

{45

i f (ch == ’\n’)46

{47

row ++;48

numberColumn = column;49

column = 0;50

}51

e l se52

{53

column ++;54

}55

}56

} while (ch != EOF);57

fclose(fptr);58

printf("The maze has %d rows and %d columns .\n",59

row , numberColumn);60

printf("The file has %d bricks .\n", numberBrick);61

printf("The exit is at (%d, %d).\n",62

exitRow , exitColumn);63

printf("The starting location is at (%d, %d).\n",64

startRow , startColumn);65

return EXIT_SUCCESS;66

}67

Finding the Exit of a Maze 363

This is the output of the program when loading the file displayed in Fig. 22.1:

The maze has 11 rows and 21 columns.

The file has 131 bricks.

The exit is at (0, 9).

The starting location is at (3, 4).

The program can be modified to handle mazes that are not rectangular. To do this,
replace:

numberColumn = column;49

with,

i f (numberColumn < column)49

{50

numberColumn = column;51

}52

If a maze is not rectangular, then numberColumn stores the size of the widest row.
To get out of the maze, the program needs to know where the bricks are. The program

creates a two-dimensional array to remember the maze cells. The program uses the following
procedure to read a maze from the file and store the information in a two-dimensional array.

1. Read the file once to determine the size (number of rows and number of columns) of
the maze.

2. Allocate enough memory to store the maze.
3. Use fseek to return to the beginning of the file.
4. Read the file again and store the maze in the allocated memory.
The previous program completes the first step. After finding the maze’s width and

height, a two-dimensional array can be allocated to store each cell of the maze. Section 8.4
explained how to allocate a two-dimensional array.

As illustrated in Fig. 10.1, calling fgetc each time removes one character from the
stream and eventually reaches the end of the file. If the program wants to read the file
again, then the program can call fclose and then fopen again. The second call to fopen

will start from the beginning of the file. Another solution is to use fseek to go back to the
beginning of a file stream. The program then reads the characters from the file again.

// readmaze.c1

// read a maze file and store it in a two -dimensional array2

3

#include <stdio.h>4

#include <stdlib.h>5

int main(int argc , char * argv [])6

{7

FILE * fptr;8

int ch;9

int row = 0;10

int column = 0;11

int numberRow , numberColumn;12

int * * mazeArr;13

i f (argc < 2)14

{15

printf("Need to provide the file’s name.\n");16

return EXIT_FAILURE;17

364 Intermediate C Programming

}18

fptr = fopen(argv[1], "r");19

i f (fptr == NULL)20

{21

printf("fopen fail.\n");22

return EXIT_FAILURE;23

}24

numberColumn = 0;25

// get the numbers of rows and columns26

do27

{28

ch = fgetc(fptr);29

i f (ch != EOF)30

{31

i f (ch == ’\n’)32

{33

row ++;34

numberColumn = column;35

column = 0;36

}37

e l se38

{39

column ++;40

}41

}42

} while (ch != EOF);43

numberRow = row;44

// allocate memory for the mazeArr45

mazeArr = malloc(numberRow * s i z eo f (int *));46

for (row = 0; row < numberRow; row ++)47

{48

mazeArr[row] = malloc(numberColumn * s i z eo f (int));49

}50

// return to the beginning of the file51

fseek(fptr , 0, SEEK_SET);52

// read the file again and fill the two -dimensional array53

row = 0;54

column = 0;55

do56

{57

ch = fgetc(fptr);58

i f (ch != EOF)59

{60

i f (ch == ’\n’)61

{62

row ++;63

column = 0;64

}65

e l se66

{67

mazeArr[row][column] = ch;68

Finding the Exit of a Maze 365

column ++;69

}70

}71

} while (ch != EOF);72

fclose(fptr);73

printf("The mazeArr has %d rows and %d columns .\n",74

numberRow , numberColumn);75

for (row = 0; row < numberRow; row ++)76

{77

for (column = 0; column < numberColumn; column ++)78

{79

printf("%c", mazeArr[row][column]);80

}81

printf("\n");82

}83

// release the memory84

for (row = 0; row < numberRow; row ++)85

{86

free (mazeArr[row]);87

}88

free (mazeArr);89

return EXIT_SUCCESS;90

}91

The program stores the maze in a two-dimensional array called mazeArr. With mazeArr,
it is easier to determine whether a particular cell is a brick by giving the row and column
indexes. There is a fundamental problem, however: Several pieces of information are not
stored anywhere with the array. For example, the size of the maze, the location of the exit,
and the location of the starting point. It is better to create a structure so that all of this
related information can be better organized.

22.3 The Maze Structure

A structure is defined to store relevant information about a maze. This structure stores
the maze’s size (number of rows and number of columns), the starting location, the exit lo-
cation, and the current location during movement. The structure also has a two-dimensional
array to store the information for each cell in the maze. A constructor function creates and
initializes the maze object by reading a file. The destructor function releases the memory
used in the maze object, and is called before the program ends.

Below is the code listing for the header file. It includes the definition for Maze structure,
as well as the constructor and destructor functions.

/* maze.h */1

#ifndef MAZE_H2

#define MAZE_H3

#define STARTSYMBOL ’s’4

#define EXITSYMBOL ’E’5

#define BRICKSYMBOL ’*’6

#define CORRIDORSYMBOL ’ ’7

366 Intermediate C Programming

#define INVALIDSYMBOL ’-’8

typedef struct9

{10

int numRow , numCol; // size of the maze11

int startRow , startCol; // starting location12

int exitRow , exitCol; // exit location13

int curRow , curCol; // current location14

// brick? exit? starting point? corridor? 2-dimensional15

// array storing the cells16

int * * cells;17

} Maze;18

// directions , ORIGIN marks the starting point19

enum {ORIGIN , EAST , SOUTH , WEST , NORTH };20

// move forward , backward , or found exit alread21

enum {FORWARD , BACKWARD , DONE};22

// read the maze from a file23

Maze * Maze_construct(char * fileName);24

// release memory before the program ends25

void Maze_destruct(Maze * mz);26

// print the maze’s properties (mainly for debugging)27

void Maze_print(Maze * mz);28

#endif29

The following listing gives sample implementations for the functions declared in the
header file.

// mazeread.c1

#include "maze.h"2

#include <stdio.h>3

#include <stdlib.h>4

// A static function can be called by another function5

// in the same file. A static function cannot be called6

// by any function outside this file.7

// If ptr is NULL , print an error message and exit8

s ta t i c void checkMalloc(void * ptr , char * message);9

// find the length of a line in a file (EOF or ’\n’)10

s ta t i c int findLineLength(FILE * fh);11

// Find the numbers of rows and columns. If the maze is not12

// rectangular , use the widest row13

s ta t i c void Maze_findSize(FILE * fh, int * numRow ,14

int * numCol);15

s ta t i c void checkMalloc(void * ptr , char * message)16

{17

i f (ptr == NULL) // malloc fail18

{19

printf("malloc for %s fail\n", message);20

}21

}22

s ta t i c int findLineLength(FILE * fh)23

{24

int ch;25

int length = 0;26

Finding the Exit of a Maze 367

i f (feof(fh)) { return -1; }27

do28

{29

ch = fgetc(fh); // read one character30

length ++;31

} while ((ch != ’\n’) && (ch != EOF));32

return length;33

}34

s ta t i c void Maze_findSize(FILE * fh, int * numRow , int *35

numCol)36

{37

int row = 0;38

int col = 0;39

int maxCol = 0;40

// find the maximum number of columns. This allows the41

// program to handle a maze that is not rectangular.42

do43

{44

col = findLineLength(fh);45

i f (col != -1)46

{47

i f (maxCol < col) { maxCol = col; }48

row ++;49

}50

} while (col != -1);51

* numRow = row;52

* numCol = maxCol;53

}54

Maze * Maze_construct(char * fileName)55

{56

int numRow = 0;57

int numCol = 0;58

int row , col;59

int ch;60

FILE * fptr = fopen(fileName , "r");61

i f (fptr == 0)62

{63

fprintf(stderr , "open %s fail\n", fileName);64

return NULL;65

}66

Maze_findSize(fptr , & numRow , & numCol);67

Maze * mzptr = malloc(s i z eo f (Maze));68

checkMalloc(mzptr , "mzptr");69

mzptr -> numRow = numRow;70

mzptr -> numCol = numCol;71

// create a two -dimensional array to store the cells72

mzptr -> cells = malloc(numRow * s i z eo f (int *));73

checkMalloc(mzptr -> cells , "mzptr -> cells");74

for (row = 0; row < numRow; row ++)75

{76

mzptr -> cells[row] = malloc(numCol * s i z eo f (int));77

368 Intermediate C Programming

checkMalloc(mzptr -> cells[row],78

"mzptr -> cells[row]");79

// initialize the cells to invalid80

for (col = 0; col < numCol; col ++)81

{82

(mzptr -> cells)[row][col] = INVALIDSYMBOL;83

}84

}85

// move fptr to the beginning86

fseek(fptr , 0, SEEK_SET);87

// read the file again and fill the two -dimensional array88

row = 0;89

while ((! feof(fptr)) && (ch != EOF) && (row < numRow))90

{91

// fill one row92

col = 0;93

do94

{95

ch = fgetc(fptr);96

i f (ch != EOF)97

{98

// notice that ’\n’ is also stored99

(mzptr -> cells)[row][col] = ch;100

switch (ch)101

{102

case STARTSYMBOL:103

mzptr -> startRow = row;104

mzptr -> startCol = col;105

mzptr -> curRow = row;106

mzptr -> curCol = col;107

break;108

case EXITSYMBOL:109

mzptr -> exitRow = row;110

mzptr -> exitCol = col;111

break;112

}113

col ++;114

}115

} while ((ch != EOF) && (ch != ’\n’));116

// checking ’\n" to handle non -rectangular mazes117

row ++;118

}119

fclose(fptr);120

return mzptr;121

}122

// release the memory123

void Maze_destruct(Maze * mzptr)124

{125

int row;126

for (row = 0; row < (mzptr -> numRow); row ++)127

{ free ((mzptr -> cells)[row]); }128

Finding the Exit of a Maze 369

free (mzptr -> cells);129

free(mzptr);130

}131

void Maze_print(Maze * mzptr)132

{133

int row;134

int col;135

for (row = 0; row < (mzptr -> numRow); row ++)136

{137

for (col = 0; col < (mzptr -> numCol); col ++)138

{139

i f (((mzptr -> curRow) == row) &&140

((mzptr -> curCol) == col))141

{142

i f (((mzptr -> curRow) ==143

(mzptr -> startRow))144

&&145

((mzptr -> curCol) ==146

(mzptr -> startCol)))147

{148

printf("s");149

}150

e l se151

{152

printf("c");153

}154

}155

e l se156

{157

printf("%c", (mzptr -> cells)[row][col]);158

}159

}160

printf("\n");161

}162

}163

22.4 An Escape Strategy

Your GPS (Global Positioning System) is not working—it cannot receive the satellite
signal. Your compass is, fortunately, working. Therefore it is possible to tell the directions:
east, south, west, north. Using just a compass and some memory, it is possible to solve a
maze using the following strategy:
• Inside a corridor, go as far as possible. This is shown in Fig. 22.2 (a) and (b). The

dotted line behind the 1 arrow indicates that you cannot move backwards.
• After reaching a dead end, turn around and move backward along the same corridor.

This is shown in Fig. 22.2 (c). In “backward mode”, the dotted line is no longer
applicable.

370 Intermediate C Programming

1

2

(a)

1 2 3

4

5

(b)

1

2

forward mode

reach dead end

turn around

backward mode

(c)

FIGURE 22.2: Strategy to get out of a maze. Suppose ↑ is north and → is east. A gray
square is a brick. (a) If moving east in step 1 does not reach a dead end, then keep moving
east in step 2. (b) If the corridor has a turn, then follow the turn and keep moving forward.
(c) After encountering a dead end, turn around (i.e., backtrack) and move back along the
corridor.

• At an intersection, try to go east if that is possible. It is, of course, arbitrary to prefer
east. The solution would be similar if we preferred south first, or west first, or north
first. This example strategy chooses to go east first. If that is not possible, then try to
go south. If going south is not an option, then try to go west. The last preference is
to attempt to go north. Fig. 22.3–Fig. 22.6 illustrate the strategy. Fig. 22.3 (a) shows
that you are about to enter an intersection.
• After encountering a dead end, return to the previous intersection and choose another

direction.
• If all possible directions at an intersection lead to dead ends, then return to the

previous intersection and choose another direction.

1

(a)

1

2

(b)

3

1

2

(c)

1

4

(d)

FIGURE 22.3: Strategy at an intersection. (a) About to enter an intersection. (b) At the
intersection (marked as “2”), try to go east first. (c) It is a dead end. Turn around and
return to the previous intersection. (d) The mark “2” now becomes “4”, indicating that it
is the fourth visited cell. Since cell “3” is a dead end, it is marked black.

Finding the Exit of a Maze 371

1

5

4

(a)

1

5

4

6

(b)

1

5

7

4

6

(c)

1

5

4

8

(d)

FIGURE 22.4: (a) Since east is a dead end, try to go south. (b) Enter another intersection,
marked as “6”. (c) Go east and find that it is another dead end. (d) Turn around to the
previous intersection, now marked as “8”. (This is the eighth move in the sequence of moves.)
The dead end is replaced by black.

1

5

9

4

8

(a)

1

5

4

10

(b)

1

11

4

(c)

1

12

(d)

FIGURE 22.5: (a) It is not possible to go south at this intersection. Move west and mark
the cell as “9”. (b) This is another dead end. Turn around and mark the intersection as
“10”. (c) Since both options lead to dead ends, we return to the previous intersection. The
visited cells are marked black. (d) Back at the first intersection.

1

12 13

(a)

1

14

(b)

15

(c)

16

(d)

FIGURE 22.6: (a) Going west is an option. (b) It is another dead end. Return to the
previous intersection. (c),(d) All options at this intersection lead to dead ends, so it should
return along the corridor.

22.5 Implementing the Strategy

How can such a strategy be implemented in C? We will explain step by step.

372 Intermediate C Programming

22.5.1 canMove Function

This function reports whether it is possible to move in a given direction from the current
location. If the destination is a brick, then the move is not allowed. As explained earlier
in Fig. 22.1, moving east means adding one to the column index. Moving north means
subtracting one from the row index. It is unnecessary to check whether indexes (rows and
columns) are valid (in the maze’s bounds) because a valid maze is always enclosed by bricks,
except for the exit.

// canmove.c1

#include "maze.h"2

int canMove(Maze * mzptr , int row , int col , int dir)3

{4

/* (row , col) is the current location */5

switch (dir)6

{7

case NORTH:8

row --;9

break;10

case SOUTH:11

row ++;12

break;13

case WEST:14

col --;15

break;16

case EAST:17

col ++;18

break;19

}20

int dest = (mzptr ->cells)[row][col];21

i f ((dest == ’ ’) || (dest == ’E’))22

{ return 1; } /* corridor or exit , can move to */23

return 0; /* cannot move to */24

}25

Modifying the function arguments (row and col) does not result in a move, because the
function arguments are copied onto the frame of canMove in the call stack. Modifying them
only changes the values in camMove’s frame and does not modify the values in the caller.

22.5.2 getOut Function

This function finds the exit, and is thus called getOut. We will build this function up by
gradually adding more code and explanation. Let’s start with a simple function that stops
when the exit is found:

void getOut(Maze * mzptr , int row , int col)1

{2

i f ((mzptr -> maze)[row][col] == ’E’) // found exit3

{4

printf("Found the exit!\n");5

return;6

}7

}8

Finding the Exit of a Maze 373

That is easy enough. This does not solve the entire problem but it is a good stepping
stone. Good programmers always take small steps toward solutions. What should the func-
tion do if the current location is not the exit? If the current location is not the exit, then
the function checks whether it is possible to move east. If this is possible (because canMove

returns 1), then the function moves east by adding 1 to the column index and calls getOut
again. This is a recursive call. Why should the function be recursive? The reason is that we
adopt the same strategy at each cell, until the exit is found.

void getOut(Maze * mzptr , int row , int col)1

{2

i f ((mzptr -> maze)[row][col] == ’E’) // found exit3

{4

printf("Found the exit!\n");5

return;6

}7

i f (canMove(mzptr , row , col , EAST))8

{9

getOut(mzptr , row , col + 1);10

// moving east means adding 1 to the column index11

}12

}13

What should the function do if moving east is not possible? An example is shown in
Fig. 22.3 (a). In this case, the function tries to go south.

void getOut(Maze * mz, int row , int col)1

{2

i f ((mz -> maze)[row][col] == ’E’) // found exit3

{4

printf("Found the exit!\n");5

return;6

}7

i f (canMove(mz, row , col , EAST))8

{9

getOut(mz , row , col + 1);10

// moving east means adding 1 to the column index11

}12

i f (canMove(mz, row , col , SOUTH))13

{14

getOut(mz , row + 1, col);15

// moving south means adding 1 to the row index16

}17

}18

What is the method to determine which of the four possible directions can be taken? The
order of calling canMove determines which direction is considered first. If the order of these
calls is changed, then the function tries another direction first. The other two directions
(west and north) are also checked using the following function:

void getOut(Maze * mzptr , int row , int col)1

{2

i f ((mzptr -> maze)[row][col] == ’E’) // found exit3

{4

printf("Found the exit!\n");5

374 Intermediate C Programming

return;6

}7

i f (canMove(mzptr , row , col , EAST))8

{9

getOut(mzptr , row , col + 1);10

// moving east : adding 1 to the column index11

}12

i f (canMove(mzptr , row , col , SOUTH))13

{14

getOut(mzptr , row + 1, col);15

// moving south : adding 1 to the row index16

}17

i f (canMove(mzptr , row , col , WEST))18

{19

getOut(mzptr , row , col - 1);20

// moving west : subtracting 1 from the column index21

}22

i f (canMove(mzptr , row , col , NORTH))23

{24

getOut(mzptr , row - 1, col);25

// moving north : subtracting 1 from the row index26

}27

}28

This function implements the basic concepts of our strategy, however, it still needs a
few improvements. A common question from students is whether this function can handle a
corridor with an intersection. To answer this question, we need to understand the difference
between a corridor and an intersection. A corridor is enclosed by bricks on two sides. There-
fore, two of the if conditions are false. At an intersection, more than two if conditions are
true. It is possible to have a four-way intersection as shown in Fig. 22.7. There is nothing
special about corridors and intersections. If it is possible to move in a particular direction,
then the program moves in that direction. Thus, the same code can handle corridors and
intersections because along a corridor only two if conditions are true.

What about dead ends? If it is a dead end, then only one if condition is true.

A

B

FIGURE 22.7: Two four-way intersections at A and B. At a four-way intersection, all
four if conditions are true.

How does the program determine if a cell is a dead end? Fig. 22.3–22.6 mark visited
cells as bricks. Marking visited cells seems a reasonable approach. If a cell is a dead end,
then the cell should be visited only once. If a cell is a corridor, then the cell may be visited
twice. If a cell is an intersection, then the cell may be visited more than twice. We need

Finding the Exit of a Maze 375

to distinguish between these conditions. If we simply mark a cell as visited, then we may
inadvertently eliminate an intersection. Therefore, the function does not mark cells that
have already been visited. Without marking visited cells, won’t the function revisit the
same cells over and over again and get stuck? Is marking visited cells necessary? Before
answering this question, let’s consider how the function handles dead ends.

Fig. 22.8 shows an example of a dead end. After discovering the dead end, we turn
around and move west. However, after moving one step to the west, the function finds that
it is possible to move east again. After moving east, we find the dead end and turn around
to move west. Again we find we can move east again and do so. This function has problems
because it gets stuck.

1

2

FIGURE 22.8: After reaching a dead end, we should turn around and move west. At
location 2, moving east is an option again. We will get stuck here in these two cells and
need a solution to prevent this from happening.

If you take a closer look of Fig. 22.2, you will find something different between Fig. 22.2
and Fig. 22.8. There are dotted lines in Fig. 22.2 as a barrier that prevents moving backward.
How can we write code for this? The function goes east if the two conditions are satisfied:

1. It is not a brick.
2. The previous location was not going west.
These two conditions prevent going back and forth as illustrated in Fig. 22.8. Similarly,

the function considers south if there is no brick to the south, and the previous step was
not north. To make this work, one more argument is needed for the getOut function. This
argument is dir and it tells the function the direction taken in the previous step.

void getOut(Maze * mzptr , int row , int col , int dir)1

{2

i f ((mzptr -> maze)[row][col] == ’E’) // found exit3

{4

printf("Found the exit!\n");5

return;6

}7

i f (canMove(mzptr , row , col , EAST) && (dir != WEST))8

{9

// move east if it is not a brick and10

// the last step was not moving west11

getOut(mzptr , row , col + 1, EAST);12

}13

i f (canMove(mzptr , row , col , SOUTH) && (dir != NORTH))14

{15

getOut(mzptr , row + 1, col , SOUTH);16

}17

376 Intermediate C Programming

i f (canMove(mzptr , row , col , WEST) && (dir != EAST))18

{19

getOut(mzptr , row , col - 1, WEST);20

}21

i f (canMove(mzptr , row , col , NORTH) && (dir != SOUTH))22

{23

getOut(mzptr , row - 1, col , NORTH);24

}25

}26

This function prevents going back and forth by checking whether the previous step was
in the opposite direction.

The function does not turn around after reaching a dead end. It needs a way to distin-
guish between “forward” and “backward” mode. In forward mode, it does not revisit cells.
In backward mode after turning around, it is necessary to revisit cells.

What does a dead end mean? It means that none of the four forward directions are
available. In other words, all the four if (canMove ...&& (dir != ...)) conditions are
false. Why? If one of them were true, then the function would have taken that direction
and moved forward. Thus, if the function reaches the bottom without calling itself, the cell
is a dead end. The mode variable is set to BACKWARD. It must be a pointer in order to keep
this change when the function returns to the caller after the top frame is popped.

void getOut(Maze * mzptr , int row , int col ,1

int dir , int * mode)2

{3

i f ((mzptr -> maze)[row][col] == ’E’)4

{5

printf("Found the exit!\n");6

return;7

}8

i f (canMove(mzptr , row , col , EAST) && (dir != WEST))9

{10

getOut(mzptr , row , col + 1, EAST , mode);11

}12

i f (canMove(mzptr , row , col , SOUTH) && (dir != NORTH))13

{14

getOut(mzptr , row + 1, col , SOUTH , mode);15

}16

i f (canMove(mzptr , row , col , WEST) && (dir != EAST))17

{18

getOut(mzptr , row , col - 1, WEST , mode);19

}20

i f (canMove(mzptr , row , col , NORTH) && (dir != SOUTH))21

{22

getOut(mzptr , row - 1, col , NORTH , mode);23

}24

// reaching this point means the cell is a dead end25

// turn around and move backward26

(* mode) = BACKWARD;27

}28

In the forward mode, getOut calls itself and new frames are pushed onto the call stack.
In the backward mode, frames are popped from the call stack. This means returning to the

Finding the Exit of a Maze 377

previously visited cells because row and col are stored in the frames. This is an example
of using the call stack to store information. How many frames should be popped? When
will this * mode variable be changed back to FORWARD? The answer is after returning to a
location where another direction is possible and has not been taken. This is, by definition,
an intersection. Remember, intersections have at least two if conditions that are true.

In Fig. 22.3–22.6, when moving backward, the visited cells are marked black. This is
unnecessary in the function because the four if conditions already keep track of which
remaining options are available. In Fig. 22.3, number 2 is an intersection and the program
moves east when the first if condition is true. After finding that it is a dead end and turning
around, the function continues from the return location stored in the call stack. This is the
line after the first if condition. When returning to the previous location (now marked as
4), the first if condition has already been tested and will not be tested again.

This can be explained in a different way. Consider the following example:

void f(int x, int y)1

{2

i f (x == 1)3

{4

/* do A */5

}6

/* do B */7

i f (y == 1)8

{9

/* do C */10

}11

}12

When the function reaches location B, the function will not test x == 1 again and the
function will not execute A again. This is the same even if A calls f itself. In Fig. 22.3, when
returning to the previous location, currently marked 4, the function has already checked
and taken the option of moving east. The function will not check whether moving east is
an option any more. Instead, the function will check the remaining three if conditions for
going south, west, and north. Each if condition uses dir != to prevent going back to the
previous cell. Thus, when an if condition is true, there must be an unexplored direction
and the function changes * mode to FORWARD. The getOut function is changed as follows:

void getOut(Maze * mzptr , int row , int col ,1

int dir , int * mode)2

{3

i f ((mzptr -> maze)[row][col] == ’E’)4

{5

printf("Found the exit!\n");6

return;7

}8

i f (canMove(mzptr , row , col , EAST) && (dir != WEST))9

{10

(* mode) = FORWARD;11

getOut(mzptr , row , col + 1, EAST , mode);12

}13

i f (canMove(mzptr , row , col , SOUTH) && (dir != NORTH))14

{15

(* mode) = FORWARD;16

getOut(mzptr , row + 1, col , SOUTH , mode);17

378 Intermediate C Programming

}18

i f (canMove(mzptr , row , col , WEST) && (dir != EAST))19

{20

(* mode) = FORWARD;21

getOut(mzptr , row , col - 1, WEST , mode);22

}23

i f (canMove(mzptr , row , col , NORTH) && (dir != SOUTH))24

{25

(* mode) = FORWARD;26

getOut(mz , row - 1, col , NORTH , mode);27

}28

(* mode) = BACKWARD;29

}30

22.5.3 Printing Visited Locations

We still need to print the moves as shown in Section 22.1. How can getOut do that,
especially when moving backward? Fortunately, the call stack remembers the visited cells
because row and col are stored for each recursive call in the function’s frame on the call
stack. When getOut is called, the function prints the location, row and col. If a cell is
revisited, then the function must be in BACKWARD mode after popping the call stack and
the cell’s location is printed again. After finding the exit, * mode is set to DONE and this
prevents any further if conditions from being true. Thus, after finding the exit, there are
no more recursive calls. The frames will pop from the call stack all the way back to the
beginning of the first call to getOut.

// getout.c1

#include <stdio.h>2

#include "maze.h"3

int canMove(Maze * mzptr , int row , int col , int dir);4

void getOut(Maze * mzptr , int row , int col ,5

int dir , int * mode)6

{7

printf("Move to (%d,%d)\n", row , col);8

i f ((mzptr -> cells)[row][col] == ’E’) /* found exit */9

{10

printf("Found the exit!\n");11

(* mode) = DONE;12

}13

i f (((* mode) != DONE) &&14

canMove(mzptr , row , col , EAST) &&15

(dir != WEST))16

{17

(* mode) = FORWARD;18

getOut(mzptr , row , col + 1, EAST , mode);19

i f ((* mode) == BACKWARD)20

{21

printf("Move to (%d,%d)\n", row , col);22

}23

}24

i f (((* mode) != DONE) &&25

Finding the Exit of a Maze 379

canMove(mzptr , row , col , SOUTH) &&26

(dir != NORTH))27

{28

(* mode) = FORWARD;29

getOut(mzptr , row + 1, col , SOUTH , mode);30

i f ((* mode) == BACKWARD)31

{32

printf("Move to (%d,%d)\n", row , col);33

}34

}35

i f (((* mode) != DONE) &&36

canMove(mzptr , row , col , WEST) &&37

(dir != EAST))38

{39

(* mode) = FORWARD;40

getOut(mzptr , row , col - 1, WEST , mode);41

i f ((* mode) == BACKWARD)42

{43

printf("Move to (%d,%d)\n", row , col);44

}45

}46

i f (((* mode) != DONE) &&47

canMove(mzptr , row , col , NORTH) &&48

(dir != SOUTH))49

{50

(* mode) = FORWARD;51

getOut(mzptr , row - 1, col , NORTH , mode);52

i f ((* mode) == BACKWARD)53

{54

printf("Move to (%d,%d)\n", row , col);55

}56

}57

i f ((* mode) != DONE)58

{59

(* mode) = BACKWARD;60

}61

}62

This is the final version of the getOut function. This final version getOut solves the
maze. It can be driven by the main function as shown below:

#include <stdio.h>1

#include "maze.h"2

void getOut(Maze * mzptr , int row , int col ,3

int dir , int * mode);4

int main(int argc , char * argv [])5

{6

i f (argc < 2)7

{8

fprintf(stderr , "need a file name\n");9

return -1;10

}11

380 Intermediate C Programming

Maze * mzptr = Maze_construct(argv [1]);12

i f (mzptr == 0) { return -1; }13

/* Maze_print(mzptr); */14

int progress = FORWARD;15

getOut(mzptr , mzptr -> startRow , mzptr -> startCol ,16

ORIGIN , & progress);17

Maze_destruct(mzptr);18

return 0;19

}20

This program shows how to use structures and recursion together. By using recursion,
the visited locations are stored in the call stack as function arguments. This allows the
program to backtrack after visiting dead ends.

Chapter 23

Image Processing

23.1 Structure for Image . 381
23.2 Processing Images . 387

23.2.1 Image Pixels and Colors . 387
23.2.2 Processing Functions . 388
23.2.3 Applying a Color Filter . 389
23.2.4 Inverting the Image Colors . 389
23.2.5 Edge Detection . 390
23.2.6 Color Equalization . 391

The rapid growth of digital photography is one of the most important technological changes
in the past fifteen years. Cameras are now standard on mobile phones, tablets, and laptops.
There is also a proliferation of webcams and surveillance cameras. All of these digital images
call for clever applications to improve our lives. For example, social media websites use facial
recognition in order to make it easier to see photos of your friends. Future applications may
be able to determine what people are doing in images, or sequences of images.

This chapter introduces some basics of image processing. The main goal of this chapter
is to explain how to read and write images, as well as how to modify the colors in the
image pixels. For simplicity, this chapter considers only one image format: bitmap (BMP).
BMP files are not normally compressed and the pixels are independently stored. A more
commonly used format is called Joint Photographic Experts Group, also known as JPEG.
JPEG files are compressed using the discrete cosine transform (DCT). This compression
algorithm is beyond the scope of this book.

23.1 Structure for Image

An image includes many pixels. Each pixel is a dot in the image and it has one single
color. The colors of the pixels are called the “data” of the image. In addition to the colors,
an image has additional information about the image. For example, if it is a photograph,
the file may have the date when the photo was taken, the brand of the camera, etc. The
additional information is separate from the pixel colors, but describes something that may
be interesting about the pixels. This additional information is called “metadata”. When
taking a photograph with a digital camera, the camera records a wide range of metadata.
Fig. 23.1 shows the metadata of a photograph taken by a Nikon Coolpix S3500 camera. A
different camera model or a different brand may produce different types of metadata.

A bitmap image file has two parts. The first part is the metadata (also called header).
The second part is the data. The header has 54 bytes in length and the size of the data
depends on the number of pixels.

The header is defined as:

381

382 Intermediate C Programming

FIGURE 23.1: Example of metadata: the exposure time, the focal length, the time and
the date, etc.

// bmpheader.h1

#ifndef _BMPHEADER_H_2

#define _BMPHEADER_H_3

#include <stdint.h>4

// tell compiler not to add space between the attributes5

#pragma pack (1)6

// A BMP file has a header (54 bytes) and data7

8

typedef struct9

{10

uint16_t type; // Magic identifier11

uint32_t size; // File size in bytes12

uint16_t reserved1; // Not used13

uint16_t reserved2; // Not used14

uint32_t offset; //15

uint32_t header_size; // Header size in bytes16

uint32_t width; // Width of the image17

uint32_t height; // Height of image18

uint16_t planes; // Number of color planes19

uint16_t bits; // Bits per pixel20

uint32_t compression; // Compression type21

uint32_t imagesize; // Image size in bytes22

uint32_t xresolution; // Pixels per meter23

uint32_t yresolution; // Pixels per meter24

uint32_t ncolours; // Number of colors25

uint32_t importantcolours; // Important colors26

27

} BMP_Header;28

#endif29

This header file introduces several new concepts. The sixth line tells the compiler not to add
any padding between the attributes of a structure. This ensures that the size of a header

Image Processing 383

object is precisely 54 bytes. Without this line, the compiler may align the attributes for
better performance.

Another new concept is including the file <stdint.h>. This file contains definitions of
integer types that are guaranteed to have the same sizes on different machines. The int

type on one machine may have a different size from the int type on another machine. When
reading a 54 byte head from disk, we need to use the same size for the header regardless
of the machine. These types defined in <stdint.h> all have int in them, followed by the
number of bits, and t. Thus, a 32-bit integer is int32 t. If the type is unsigned, then it is
prefixed with a u. An unsigned 16-bit integer is uint16 t.

In the bitmap header structure, some attributes are 16 bits and the others are 32 bits.
They are all unsigned, because none of the attributes can take on negative values. The
order of the attributes is important because the order must meet the bitmap specification.
Reordering the attributes will cause errors. The size of the header is calculated as follows:

Attribute Type Size (Bytes) Cumulative Size (Bytes)
type uint16 t 2 2
size uint32 t 4 6
reserved1 uint16 t 2 8
reserved2 uint16 t 2 10
offset uint32 t 4 14
header size uint32 t 4 18
width uint32 t 4 22
height uint32 t 4 26
planes uint16 t 2 28
bits uint16 t 2 30
compression uint32 t 4 34
imagesize uint32 t 4 38
xresolution uint32 t 4 42
yresolution uint32 t 4 46
ncolours uint32 t 4 50
importantcolours uint32 t 4 54

To read the image header from file, call fread as follows:

FILE *fptr = fopen(filename , "r");1

i f (fptr == NULL)2

{3

return NULL;4

}5

BMP_Header header;6

i f (fread (& header , s i z eo f (BMP_Header), 1, fptr) != 1)7

{8

// error9

}10

The header has a “magic number” whose value must be 0X4D42. This is an easy way to
check whether or not the file is a valid BMP file. If the value is not 0X4D42, then it cannot
be a BMP file. Using the magic number is a quick, but imperfect, solution for determining
whether it is a BMP file. The size attribute in the header is the size of the entire file,
including the header. Each pixel has three color values: red, green, and blue. Each color
uses one byte. Thus, the value of bits is 24 bits per pixel. The images considered in this
chapter have only one image plane and compression is not used. The correct value for planes
should be 1; the correct value for compression should be 0.

384 Intermediate C Programming

We cannot store the image pixels in the header struct, because the header has a fixed
size. The header merely tells us how to read the rest of the file. To store the pixels in
memory, we need to use another type of structure. We will call this structure BMP Image,
as shown below.

// bmpimage.h1

#ifndef _BMPIMAGE_H2

#define _BMPIMAGE_H3

#include "bmpheader.h"4

typedef struct5

{6

BMP_Header header;7

unsigned int data_size;8

unsigned int width;9

unsigned int height;10

unsigned int bytes_per_pixel;11

unsigned char * data;12

} BMP_Image;13

#endif14

A BMP Image includes the header, data size, width and height (duplicated from the
header), the number of bytes per pixel, and a pointer to the pixel data. The data size is
the size of the file after subtracting the size of the header, i.e., sizeof(BMP Header). Even
though sizeof(BMP Header) is 54, it is bad to write 54 directly. The size can be derived from
sizeof(BMP Header). Few people reading the code will know what 54 means, but every C
programmer will instantly understand sizeof(BMP Header). Therefore, you should not use
“54”. The number of bytes per pixel is the number of bits per pixel divided by 8. because
one byte is 8 bits. The following listing shows the header file and an implementation of
reading and saving image files.

// bmpfile.h1

#ifndef _BMPFILE_H_2

#define _BMPFILE_H_3

#include "bmpimage.h"4

// open a BMP image given a filename5

// return a pointer to a BMP image if success6

// returns NULL if failure.7

BMP_Image *BMP_open(const char *filename);8

// save a BMP image to the given a filename9

// return 0 if failure10

// return 1 if success11

int BMP_save(const BMP_Image *image , const char *filename);12

// release the memory of a BMP image structure13

void BMP_destroy(BMP_Image *image);14

#endif15

// bmpfile.c1

#include <stdio.h>2

#include <stdlib.h>3

#include "bmpfile.h"4

// correct values for the header5

#define MAGIC_VALUE 0X4D426

#define BITS_PER_PIXEL 247

Image Processing 385

#define NUM_PLANE 18

#define COMPRESSION 09

#define BITS_PER_BYTE 810

11

// return 0 if the header is invalid12

// return 1 if the header is valid13

s ta t i c int checkHeader(BMP_Header * hdr)14

{15

i f ((hdr -> type) != MAGIC_VALUE)16

{17

return 0;18

}19

i f ((hdr -> bits) != BITS_PER_PIXEL)20

{21

return 0;22

}23

i f ((hdr -> planes) != NUM_PLANE)24

{25

return 0;26

}27

i f ((hdr -> compression) != COMPRESSION)28

{29

return 0;30

}31

return 1;32

}33

// close opened file and release memory34

BMP_Image * cleanUp(FILE * fptr , BMP_Image * img)35

{36

i f (fptr != NULL)37

{38

fclose (fptr);39

}40

i f (img != NULL)41

{42

i f (img -> data != NULL)43

{44

free (img -> data);45

}46

free (img);47

}48

return NULL;49

}50

BMP_Image *BMP_open(const char *filename)51

{52

FILE * fptr = NULL;53

BMP_Image *img = NULL;54

fptr = fopen(filename , "r"); // "rb" unnecessary in Linux55

i f (fptr == NULL)56

{57

return cleanUp(fptr , img);58

386 Intermediate C Programming

}59

img = malloc(s i z eo f (BMP_Image));60

i f (img == NULL)61

{62

return cleanUp(fptr , img);63

}64

// read the header65

i f (fread(& (img -> header), s i z eo f (BMP_Header),66

1, fptr) != 1)67

{68

// fread fails69

return cleanUp(fptr , img);70

}71

i f (checkHeader (& (img -> header)) == 0)72

{73

return cleanUp(fptr , img);74

}75

img -> data_size =76

(img -> header).size - s i z eo f (BMP_Header);77

img -> width = (img -> header).width;78

img -> height = (img -> header).height;79

img -> bytes_per_pixel =80

(img -> header).bits / BITS_PER_BYTE;81

img -> data =82

malloc(s i z eo f (unsigned char) * (img -> data_size));83

i f ((img -> data) == NULL)84

{85

// malloc fail86

return cleanUp(fptr , img);87

}88

i f (fread(img -> data , s i z eo f (char), img -> data_size ,89

fptr) != (img -> data_size))90

{91

// fread fails92

return cleanUp(fptr , img);93

}94

char onebyte;95

i f (fread(& onebyte , s i z eo f (char), 1, fptr) != 0)96

{97

// not at the of the file but the file still has data98

return cleanUp(fptr , img);99

}100

// everything successful101

fclose (fptr);102

return img;103

}104

int BMP_save(const BMP_Image *img , const char *filename)105

{106

FILE * fptr = NULL;107

fptr = fopen(filename , "w");108

i f (fptr == NULL)109

Image Processing 387

{110

return 0;111

}112

// write the header first113

i f (fwrite (& (img -> header), s i z eo f (BMP_Header), 1,114

fptr) != 1)115

{116

// fwrite fails117

fclose (fptr);118

return 0;119

}120

i f (fwrite(img -> data , s i z eo f (char), img -> data_size ,121

fptr) != (img -> data_size))122

{123

// fwrite fails124

fclose (fptr);125

return 0;126

}127

// everything successful128

fclose (fptr);129

return 1;130

}131

void BMP_destroy(BMP_Image *img)132

{133

free (img -> data);134

free (img);135

}136

23.2 Processing Images

In this BMP file format, each pixel uses three bytes representing the three primary
colors of the visible spectrum: red, green, and blue. This is commonly referred to as the
RGB color space. Other color spaces exist and are used for various purposes. Another
common color space is HSV, which stands for hue, saturation, and value, and is useful for
certain transformations. For example, changing the saturation value changes the vibrancy
of the color. The RGB color space is a convenient color space to start because computer
monitors use RGB values. It is not a particularly useful color space for producing natural
blending effects, or for specifying the patterns and amounts of inks to be sprayed when
printing. RGB is simple and can be used for displaying pixels on computer monitors. BMP
images store their pixels in the RGB color space. RGB is an additive color space. When red
and green are combined, the resulting color is yellow. When red and blue are combined, the
resulting color is magenta. When green and blue are combined, the resulting color is cyan.
White is generated by combining all of the colors.

This section explains several methods for processing BMP images. Let’s see some exam-
ples before explaining how they work. Fig. 23.2–Fig. 23.7 are in the color insert.

388 Intermediate C Programming

23.2.1 Image Pixels and Colors

The image’s colors are stored in the data attribute. Every pixel uses three consecutive
bytes. For example, the first pixel uses the first three bytes: data[0], data[1], and data[2].
The second pixel uses data[3], data[4], and data[5]. Among the three elements, the first
byte represents blue, the second represents green, and the third represents red. Thus, the
order is actually BGR (not RGB).

Each data element is a byte and has a value between 0 and 255 (inclusive). Larger values
mean brighter colors. If a given pixel is pure blue, then the first element is non-zero and the
other two elements are zero. If a given pixel is pure red, then the red element is non-zero
and the other two elements are both zero. If all three elements are 255, then the pixel is the
brightest white. If all three elements are 0, then the pixel is black.

Even though an image is two-dimensional, data stores the pixels in a one-dimensional
array. This is the most common method because managing one-dimensional arrays is simpler
than managing two-dimensional arrays.

Each pixel has an (x, y) coordinate. In high school geometry, the origin (0, 0) is the
lower left corner of a graph, the X coordinate increases to the right, and the Y coordinate
increases upward. Computer graphics is generally done with a different coordinate system.
The origin (0, 0) is the top left corner of the image. The X coordinate increases to the
right, and the Y coordinate increases downward. In this coordinate system, we can access
the color values of pixels (x, y) by calculating their index in data. The formula is:
• 3 × (y × width + x) for blue
• 3 × (y × width + x) + 1 for green
• 3 × (y × width + x) + 2 for red

23.2.2 Processing Functions

The following listing is a header file that declares the functions we will consider in the
rest of this chapter.

// bmpfunc.h1

#ifndef _BMPFUNC_H_2

#define _BMPFUNC_H_3

#include "bmpimage.h"4

// keep only one color ,5

// clr = 2, keep red6

// clr = 1, keep green7

// clr = 0, keep blue8

void BMP_color(BMP_Image *image , int clr);9

// Invert all of the image data in a BMP image10

// (value = 255 - value)11

void BMP_invert(BMP_Image *image);12

// calculate vertical edges using the given threshold value13

void BMP_edge(BMP_Image *image , int thrshd);14

// convert an RGB image to a gray -level image15

void BMP_gray(BMP_Image *image);16

// calculate the histogram of each color17

void BMP_histogram(BMP_Image *image);18

// make a checkerboard19

void BMP_checker(BMP_Image *image);20

// mix the colors21

void BMP_mix(BMP_Image *image);22

Image Processing 389

// equalize by making the darkest to and brightest to 25523

void BMP_equalize(BMP_Image *image);24

#endif25

23.2.3 Applying a Color Filter

The first processing function is the color filter BMP Color. The method takes a BMP
image and an integer between 0 and 2. The integer indicates which color will be selected. If
the integer is 0, then blue is selected. Likewise, 1 selects green, and 2 selects red. If a color
is not selected, it is set to zero.

// bmpcolor.c1

#include "bmpfunc.h"2

void BMP_color(BMP_Image *img , int clr)3

{4

int pxl;5

for (pxl = clr; pxl < (img -> data_size); pxl ++)6

{7

// set the other color components to zero8

i f ((pxl % 3) != clr)9

{10

img -> data[pxl] = 0;11

}12

}13

}14

As shown in Fig. 23.2 selecting one color sets the other two colors to zeros, revealing
the contribution of the selected color to the overall image. If the selected color was zero
in the original image, then the resultant pixel becomes black. For example, the upper left
of Fig. 23.2 is green. If red or blue is selected, then the upper left pixels become black, as
shown in Fig. 23.2 (b) and (d). Similarly, the upper right pixels of Fig. 23.2 are pure blue.
This means that these pixels become black if red or green is selected—shown in Fig. 23.2
(b) and (c). In most images, for example Fig. 23.3, each pixel is a mixture of all three colors.
After applying a color filter, the corresponding color stands out while the other two colors
are removed.

23.2.4 Inverting the Image Colors

The next method, BMP invert, inverts the color of each pixel. Fig. 23.4 shows the result
of this effect.

// bmpinvert.c1

#include "bmpfunc.h"2

void BMP_invert(BMP_Image *img)3

{4

int pxl;5

for (pxl = 0; pxl < (img -> data_size); pxl ++)6

{7

img -> data[pxl] = 255 - (img -> data[pxl]);8

}9

}10

390 Intermediate C Programming

23.2.5 Edge Detection

Detecting edges in an image is not easy because human brains have complex methods
using past experience and inferred knowledge. This book gives only a simple algorithm and
the results may be unsatisfactory in some ways. Part of the difficulty is that high level
features about objects must be known in order to determine where the edges are. That is
well beyond today’s state of the art. The problem looks simple because we, as humans, have
been seeing edges our entire lives. Commonly used computer edge detectors have no notion
of objects and attempt to detect edges from pixels. This chapter gives a very simple (but
still useful) method in the following steps:

1. Convert the RGB values to gray levels. This is the formula for converting an RGB
value to its corresponding gray level: 0.2989 × red + 0.5870 × green + 0.1140 × blue.
This formula is used because of the perceptual properties of the RGB color space.

2. Find the difference in the gray levels between two adjacent pixels.
3. If the difference is greater than a threshold value, then an edge has been detected.
Selecting the correct threshold depends on many factors. As shown in Fig. 23.5, if the

threshold is too high, then some edges are not detected. If the threshold is too low, then
the detection is sensitive to noise. In this example we set the threshold to 140. The code
listing below gives the function for detecting vertical edges using this simple setup.

// bmpedge.c1

#include "bmpfunc.h"2

#include <stdlib.h>3

s ta t i c int RGB2Gray(char red , char green , char blue)4

{5

// this is a commonly used formula6

double gray = 0.2989 * red + 0.5870 * green + 0.1140 * blue;7

return (int) gray;8

}9

void BMP_edge(BMP_Image *img , int thrshd)10

{11

// create a two -dimension array for the gray level12

int width = img -> width;13

int height = img -> height;14

char * * twoDGray = malloc(s i z eo f (char *) * height);15

int row;16

int col;17

for (row = 0; row < height; row ++)18

{19

twoDGray[row] = malloc(s i z eo f (char *) * width);20

}21

// convert RGB to gray22

int pxl = 0;23

for (row = 0; row < height; row ++)24

{25

for (col = 0; col < width; col ++)26

{27

twoDGray[row][col] = RGB2Gray(img -> data[pxl + 2],28

img -> data[pxl + 1],29

img -> data[pxl]);30

pxl += 3;31

}32

Image Processing 391

}33

// detect edges and save the edges in the image34

pxl = 0;35

for (row = 0; row < height; row ++)36

{37

pxl += 3; // skip the first pixel in each row38

for (col = 1; col < width; col ++)39

{40

int diff = twoDGray[row][col] -41

twoDGray[row][col - 1];42

// take the absolute value43

i f (diff < 0)44

{45

diff = - diff;46

}47

i f (diff > thrshd) // an edge48

{49

// set color to white50

img -> data[pxl + 2] = 255;51

img -> data[pxl + 1] = 255;52

img -> data[pxl] = 255;53

}54

e l se // not an edge55

{56

// set color to black57

img -> data[pxl + 2] = 0;58

img -> data[pxl + 1] = 0;59

img -> data[pxl] = 0;60

}61

pxl += 3;62

}63

}64

for (row = 0; row < height; row ++)65

{66

free(twoDGray[row]);67

}68

free (twoDGray);69

}70

23.2.6 Color Equalization

Sometimes an image is over exposed (too bright) or under exposed (too dark). The image
can usually be enhanced by using color equalization using the following steps:

1. Find the maximum and the minimum values of the colors.
2. If the maximum and the minimum values are different, scale the maximum value to

255 and the minimum value to 0.
3. Scale the color based on a formula.
There are many ways to scale the pixel’s colors. One simple method is called linear

scaling: using a linear equation to express the relationship between the original color and

392 Intermediate C Programming

the new color. Let x and y be the old and the new colors, then a linear equation has two
coefficients: a and b.

y = ax + b (23.1)

Suppose M and m are the original minimum and the maximum values. They should
become 0 and 255 after the scaling. The following two equations are used to determine the
correct values for a and b.

0 = am + b
255 = aM + b

(23.2)

a =
255

M −m
and b = − 255m

M −m
(23.3)

The code listing below implements this color equalization scheme.

// bmpequalize.c1

#include "bmpfunc.h"2

void BMP_equalize(BMP_Image *img)3

{4

int pxl;5

unsigned char redmin = 255;6

unsigned char redmax = 0;7

unsigned char greenmin = 255;8

unsigned char greenmax = 0;9

unsigned char bluemin = 255;10

unsigned char bluemax = 0;11

// find the maximum and the minimum values of each color12

for (pxl = 0; pxl < (img -> data_size); pxl += 3)13

{14

unsigned char red = img -> data[pxl + 2];15

unsigned char green = img -> data[pxl + 1];16

unsigned char blue = img -> data[pxl];17

i f (redmin > red) { redmin = red; }18

i f (redmax < red) { redmax = red; }19

i f (greenmin > green) { greenmin = green; }20

i f (greenmax < green) { greenmax = green; }21

i f (bluemin > blue) { bluemin = blue; }22

i f (bluemax < blue) { bluemax = blue; }23

}24

// calculate the scaling factors25

// max and min must be different to prevent26

// divided by zero error27

double redscale = 1.0;28

double greenscale = 1.0;29

double bluescale = 1.0;30

i f (redmax > redmin)31

{32

redscale = 255.0 / (redmax - redmin);33

}34

i f (greenmax > greenmin)35

{36

Image Processing 393

greenscale = 255.0 / (greenmax - greenmin);37

}38

i f (bluemax > bluemin)39

{40

bluescale = 255.0 / (bluemax - bluemin);41

}42

43

// equalize the pixels44

for (pxl = 0; pxl < (img -> data_size); pxl += 3)45

{46

i f (redmax > redmin)47

{48

img -> data[pxl + 2] = (int) (redscale *49

(img -> data[pxl + 2] - redmin));50

}51

i f (greenmax > greenmin)52

{53

img -> data[pxl + 1] = (int) (greenscale *54

(img -> data[pxl + 1] - greenmin));55

}56

i f (bluemax > bluemin)57

{58

img -> data[pxl] = (int) (bluescale *59

(img -> data[pxl] - bluemin));60

}61

}62

}63

This chapter gives a starting point for image processing. Image processing is a rich
subject and there are many books on the topic and related topics.

This page intentionally left blankThis page intentionally left blank

Chapter 24

Huffman Compression

24.1 Example . 395
24.2 Encoding . 397

24.2.1 Count Frequencies . 397
24.2.2 Sort by Frequency . 399
24.2.3 Build a Code Tree . 400
24.2.4 Build a Code Book . 410
24.2.5 Compress a File . 415
24.2.6 Compress with Bits . 418

24.3 Decoding . 423

Section 19.4 introduced binary trees through the example of binary search trees. This chap-
ter describes another way to use binary trees in a popular compression technique called
Huffman Compression or Huffman Coding. Huffman Coding was developed by David Huff-
man in the early 1950s, while he was still a graduate student at MIT. After more than
60 years, Huffman Coding remains one of the best general-purpose compression algorithms
available, fast and widely used.

It is easier to understand Huffman Coding by comparing it to ASCII. ASCII is a “fixed-
length code” using 8 bits for each letter, even though some letters (such as e and s) are
more common than some others (such as q and z). In contrast, Huffman Compression uses
“variable-length code”. If a letter appears frequently, then it is encoded with fewer bits. If a
letter appears infrequently, then more bits are used. This means that the average length of
all letters is shorter—the information is compressed. Huffman Coding is lossless compression
because the original data can be fully recovered. Lossy compression means the original data
cannot be fully recovered. Lossy compression may achieve higher compression ratios than
lossless compression, and is useful when full recovery of the original data is unnecessary.
Lossy compression is frequently used to compress images and JPEG is an example of lossy
compression. A compression ratio is defined as:

size of uncompressed file

size of compressed file
(24.1)

This chapter uses Huffman Coding to compress articles written in English. Given a set
of letters (or symbols) and their frequencies, Huffman Coding is optimal because Huffman
Coding uses the fewest bits on average.

24.1 Example

Consider an article with only eight different characters: E, N, G, T, g, p, d, and h. To
encode these characters, only 3 bits are sufficient because 23 = 8. That means that each

395

396 Intermediate C Programming

character can be assigned to a unique 3-bit sequence. Next consider the situation when the
letters’ frequencies are quite different, as shown in this table:

character frequencies
E 0.56%
N 1.12%
G 3.93%
T 3.93%
g 10.67%
p 12.92%
d 25.84%
h 41.01%

Consider the following codes (bit sequences) for the characters. We will explain how to
generate these codes (called a “code book”) in the next section.

character code length
E 1110100 7
N 1110101 7
G 111011 6
T 11100 5
g 1111 4
p 110 3
d 10 2
h 0 1

The average number of bits is 7 × 0.0056 + 7 × 0.0112 + 6 × 0.0393 + 5 × 0.0393 + 4 ×
0.1067 + 3 × 0.1292 + 2 × 0.2584 + 1 × 0.4101 = 2.29. This is 1 − 2.29

3 ≈ 1 − 0.76 = 24%
reduction in the total length over using 3-bit codes. The code book can be displayed as a
tree, as shown in Fig. 24.1. At any tree node, 0 means moving left and 1 means moving
right.

FIGURE 24.1: Graphical representation of the code book.

Huffman Compression 397

The code book tree has several important properties:
• Characters are stored only at leaf nodes. Non-leaf nodes do not store any characters.

If a non-leaf node stores a character, then ambiguity arises. For example, if the root’s
right child stores the character ’m’, does 10 mean ’mh’ or ’d’? To put it in a different
way, no code is the prefix of another code.
• If a character is more frequent, then its distance to the root is shorter. This means

that its bit sequence will be shorter and the average total length will be shorter.
• If the entire article contains only one character (perhaps repeated many times), then

the code book has only one row in the table and the tree has one node—the root node.
• If the article contains n different characters (n > 1), then the tree has n leaf nodes

and each non-leaf node has two children. It is impossible to have a non-leaf node that
has only one child.

24.2 Encoding

To compress a file, the following steps are needed:
1. Count the frequencies of the characters.
2. Sort the characters by frequencies
3. Build a tree similar to Fig. 24.1.
4. Build the code book.
5. Use the code book to compress the file.

The chapter uses “encoder” and “compressor” interchangeably. Similarly, “decoder” and
“decompresser” are used interchangeably.

24.2.1 Count Frequencies

The first step of Huffman Coding is to determine the frequencies of each letter in the
document being compressed. We will use the charter of the United Nations as an example:

The Charter of the United Nations was signed on 26 June 1945, in San

Francisco , at the conclusion of the United Nations Conference on

International Organization , and came into force on 24 October

1945. The Statute of the International Court of Justice is an

integral part of the Charter.

Amendments to Articles 23, 27 and 61 of the Charter were adopted by

the General Assembly on 17 December 1963 and came into force on 31

August 1965. A further amendment to Article 61 was adopted by the

General Assembly on 20 December 1971, and came into force on 24

September 1973. An amendment to Article 109, adopted by the General

Assembly on 20 December 1965, came into force on 12 June 1968.

The amendment to Article 23 enlarges the membership of the Security

Council from eleven to fifteen. The amended Article 27 provides that

decisions of the Security Council on procedural matters shall be made

by an affirmative vote of nine members (formerly seven) and on all

other matters by an affirmative vote of nine members (formerly

seven), including the concurring votes of the five permanent members

of the Security Council.

398 Intermediate C Programming

The amendment to Article 61, which entered into force on 31 August

1965, enlarged the membership of the Economic and Social Council from

eighteen to twenty -seven. The subsequent amendment to that Article ,

which entered into force on 24 September 1973, further increased the

membership of the Council from twenty -seven to fifty -four.

The amendment to Article 109, which relates to the first paragraph of

that Article , provides that a General Conference of Member States for
the purpose of reviewing the Charter may be held at a date and place

to be fixed by a two -thirds vote of the members of the General

Assembly and by a vote of any nine members (formerly seven) of the

Security Council. Paragraph 3 of Article 109, which deals with the

consideration of a possible review conference during the tenth

regular session of the General Assembly , has been retained in its

original form in its reference to a "vote , of any seven members of

the Security Council", the paragraph having been acted upon in 1955

by the General Assembly , at its tenth regular session , and by the

Security Council.

The table below shows the frequencies of the characters in the UN charter:

V: ASCII value C: character (if printable) F: frequency
V C F V C F V C F V C F V C F
10 38 11 0 12 0 13 0 14 0
30 0 31 0 32 340 33 ! 0 34 ” 2
35 # 0 36 $ 0 37 % 0 38 & 0 39 ’ 0
40 (3 41) 3 42 * 0 43 + 0 44 , 20
45 - 4 46 . 11 47 / 0 48 0 5 49 1 22
50 2 11 51 3 8 52 4 5 53 5 7 54 6 9
55 7 6 56 8 1 57 9 14 58 : 0 59 ; 0
60 < 0 61 = 0 62 > 0 63 ? 0 64 @ 0
65 A 21 66 B 0 67 C 15 68 D 3 69 E 1
70 F 1 71 G 7 72 H 0 73 I 2 74 J 3
75 K 0 76 L 0 77 M 1 78 N 2 79 O 2
80 P 1 81 Q 0 82 R 0 83 S 12 84 T 7
85 U 2 86 V 0 87 W 0 88 X 0 89 Y 0
90 Z 0 91 [0 92 \ 0 93] 0 94 ∧ 0
95 0 96 ‘ 0 97 a 105 98 b 38 99 c 64

100 d 46 101 e 263 102 f 58 103 g 19 104 h 73
105 i 96 106 j 0 107 k 0 108 l 56 109 m 64
110 n 140 111 o 121 112 p 23 113 q 1 114 r 119
115 s 71 116 t 157 117 u 37 118 v 21 119 w 13
120 x 1 121 y 30 122 z 1 123 { 0 124 — 0
125 } 0 126 0 127 0

The important point is that some characters appear much more frequently than the
others. For example, the letter ’e’ appears 263 times and ’t’ appears 157 times. In contrast,
’z’ appears only once and ’B’ is not in the article at all. Note that there are some invisible
characters. For example, 10 is the newline character (’\n’) and it is used 38 times (there
are 38 lines in the charter). The ASCII code 32 is used for a space character, and it is used
340 times.

Huffman Compression 399

24.2.2 Sort by Frequency

After finding the frequencies of the characters, the frequencies are sorted in the ascending
order. The table below shows the characters sorted by their frequencies. If a character (for
example, ’B’ and ’H’) does not appear in the article, then it is discarded. If two characters
have the same frequency, then their order does not matter. When this occurs, we order the
letters of the same frequency by their ASCII value. For example, ’E’ and ’F’ appear once
and ’E’ is before ’F’ in this table.

V: value C: character F: frequency
V C F V C F V C F V C F V C F
56 8 1 69 E 1 70 F 1 77 M 1 80 P 1

113 q 1 120 x 1 122 z 1 34 ” 2 73 I 2
78 N 2 79 O 2 85 U 2 40 (3 41) 3
68 D 3 74 J 3 45 - 4 48 0 5 52 4 5
55 7 6 53 5 7 71 G 7 84 T 7 51 3 8
54 6 9 46 . 11 50 2 11 83 S 12 119 w 13
57 9 14 67 C 15 103 g 19 44 , 20 65 A 21

118 v 21 49 1 22 112 p 23 121 y 30 117 u 37
10 38 98 b 38 100 d 46 108 l 56 102 f 58
99 c 64 109 m 64 115 s 71 104 h 73 105 i 96
97 a 105 114 r 119 111 o 121 110 n 140 116 t 157

101 e 263 32 340

The following code gives a sample implementation for determining the frequency of each
character, and then sorting the characters by their frequencies. This is the header file:

// freq.h1

#ifndef FREQ_H2

#define FREQ_H3

typedef struct4

{5

char value;6

int freq;7

} CharFreq;8

// count the frequencies of the letters9

// NUMLETTER is a constant (128) defined in constant.h10

// frequencies is an array of NUMLETTER elements11

// The function returns the number of characters in the file12

// The function returns 0 if cannot read from the file13

int countFrequency(char * filename , CharFreq * frequencies);14

// print the array15

void printFrequency(CharFreq * frequencies);16

// sort the array17

void sortFrequency(CharFreq * frequencies);18

#endif19

This listing defines the function implementations.

// freq.c1

#include "constant.h"2

#include "freq.h"3

#include <stdio.h>4

#include <stdlib.h>5

400 Intermediate C Programming

#include <strings.h>6

int countFrequency(char * filename , CharFreq * freq)7

{8

FILE * fptr = fopen(filename , "r");9

int count = 0;10

i f (fptr == NULL)11

{12

return 0;13

}14

while (! feof (fptr))15

{16

int onechar = fgetc(fptr);17

i f (onechar != EOF)18

{19

count ++;20

freq[onechar]. value = (char) onechar;21

freq[onechar].freq ++;22

}23

}24

fclose (fptr);25

return count;26

}27

void printFrequency(CharFreq * freq)28

{29

int ind;30

for (ind = 0; ind < NUMLETTER; ind ++)31

{32

printf("%d %d\n", freq[ind].value ,33

freq[ind].freq);34

}35

printf("------------------------\n");36

}37

s ta t i c int compareFreq(const void * p1 , const void * p2)38

{39

const CharFreq * ip1 = (const CharFreq *) p1;40

const CharFreq * ip2 = (const CharFreq *) p2;41

const int iv1 = ip1 -> freq;42

const int iv2 = ip2 -> freq;43

return (iv1 - iv2);44

}45

void sortFrequency(CharFreq * freq)46

{47

qsort(freq , NUMLETTER , s i z eo f (CharFreq), compareFreq);48

}49

24.2.3 Build a Code Tree

Let’s revisit the small example from the first section of this chapter. Fig. 24.2 to Fig. 24.7
illustrate the procedure for building the tree. First, the characters (C) are sorted by the
frequencies (F). Then, a linked list is created and the nodes are sorted by the character

Huffman Compression 401

(a)

(b)

FIGURE 24.2: (a) The characters are sorted by the frequencies. (b) A linked list is created.
List nodes are expressed by rectangles. Tree nodes are expressed by ovals.

frequencies. Each list node points to a tree node. At the beginning of the algorithm, none
of the tree nodes have children.

Fig. 24.3 shows how to merge the first two list nodes. The first two list nodes, L and R,
are taken. A new tree node N is created and its left and right children are L and R. The
frequency of the newly created tree node is the sum of the frequencies of the two children.
The newly created tree node is not a leaf node so its character is irrelevant. A new list node
is created and points to the newly created tree node. The list nodes must remain sorted in
the ascending order by the tree nodes’ frequencies. These three steps have removed the two
trees from the list with the smallest frequencies, combined them into a single tree, and then
placed the new tree back onto the list, keeping the list sorted by the frequencies.

Fig. 24.4 to Fig. 24.6 repeat the same steps: (i) taking the first two tree nodes, (ii)
creating a parent node (the node’s frequency is the sum of the frequencies of the two
children), (iii) creating a list node, and (iv) inserting the list node and keeping the list
sorted. As a result, two nodes are moved from the list, and one is added, giving a net
change of removing one list node. The linked list becomes shorter.

It is important to understand the concept that is described in the figures. The first part
of the program is described below.

1. A tree structure is created. Each tree node stores a character and the character’s
frequency.

// tree.h1

#ifndef TREE_H2

#define TREE_H3

typedef struct treenode4

{5

struct treenode * left;6

struct treenode * right;7

402 Intermediate C Programming

(a)

(b)

(c)

FIGURE 24.3: (a) Take the tree nodes, L and R, from the first two list nodes. (b) Create
a tree node N whose left and right children are L and R. (c) Create a new list node pointing
to the newly created tree node. The list nodes are sorted in the ascending order by the tree
nodes’ frequencies.

char value; // character8

int freq; // frequency9

} TreeNode;10

#endif11

2. A list structure is created. Each list node has a pointer to the tree node and a link to
the next list node.

// list.h1

#ifndef LIST_H2

#define LIST_H3

typedef struct listnode4

{5

struct listnode * next;6

TreeNode * tnptr;7

} ListNode;8

#endif9

3. A linked list is created. Each list node points to a tree node. The linked list is sorted
by the frequencies. If two characters have the same frequency, then they are sorted
alphabetically.

4. Repeat the following steps until the linked list has only one node left.

Huffman Compression 403

(a)

(b)

(c)

FIGURE 24.4: Continue the procedure.

5. Take the first two nodes from the linked list (the head and the node after the head).
Take the two tree nodes pointed to by these two list nodes. Call these two tree nodes
L and R. Create a new tree node N whose left and right children are L and R. N’s
frequency is the sum of L’s and R’s frequencies. The character stored in this non-leaf
node is irrelevant.

6. Remove the first two list nodes and discard them. They are no longer needed.
7. Create a new list node pointing to N. Insert this list node so that the list nodes remain

sorted by the tree nodes’ frequencies.
Below is the program for building the tree.

// constant.h1

#ifndef CONSTATNT_H2

#define CONSTATNT_H3

#define NUMLETTER 1284

#define TEXT 15

#define BINARY 26

#endif7

404 Intermediate C Programming

(a)

(b)

FIGURE 24.5: At every step, two tree nodes are removed, combined into a single tree,
and then the new tree is added into the list.

// extend the previous tree.h1

TreeNode * TreeNode_create(char val , int freq);2

TreeNode * Tree_merge(TreeNode * tn1 , TreeNode * tn2);3

void Tree_print(TreeNode * tn, int level);4

// extend the previous list.h1

#include "tree.h"2

#include "constant.h"3

#include "freq.h"4

#include <stdio.h>5

ListNode * List_build(CharFreq * frequencies);6

ListNode * ListNode_create(TreeNode * tn);7

ListNode * List_insert(ListNode * head , ListNode * ln);8

void List_print(ListNode * head);9

// encode.h1

#ifndef ENCODE_H2

#define ENCODE_H3

Huffman Compression 405

(a) (b)

FIGURE 24.6: Continue the procedure shortening the linked list.

// encode the text in the input file4

// save the result in the output file5

// mode: TEXT or BINARY6

// return 0 if cannot read from file or write to file7

// return 1 if success8

int encode(char * infile , char * outfile , int mode);9

#endif10

// tree.c1

#include "tree.h"2

#include <stdio.h>3

#include <stdlib.h>4

TreeNode * TreeNode_create(char val , int freq)5

{6

TreeNode * tn = malloc(s i z eo f (TreeNode));7

tn -> left = NULL;8

tn -> right = NULL;9

tn -> value = val;10

tn -> freq = freq;11

return tn;12

}13

TreeNode * Tree_merge(TreeNode * tn1 , TreeNode * tn2)14

{15

TreeNode * tn = malloc(s i z eo f (TreeNode));16

tn -> left = tn1;17

tn -> right = tn2;18

tn -> value = 0; // do not care19

tn -> freq = tn1 -> freq + tn2 -> freq;20

406 Intermediate C Programming

FIGURE 24.7: Now the linked list has only one node. The tree has been built, and it is
in the only remaining list node.

return tn;21

}22

// post -order23

void Tree_print(TreeNode * tn, int level)24

{25

i f (tn == NULL)26

{27

return;28

}29

TreeNode * lc = tn -> left; // left child30

TreeNode * rc = tn -> right; // right child31

Tree_print(lc, level + 1);32

Tree_print(rc, level + 1);33

int depth;34

for (depth = 0; depth < level; depth ++)35

{36

printf(" ");37

}38

printf("freq = %d ", tn -> freq);39

i f ((lc == NULL) && (rc == NULL))40

{41

// a leaf node42

printf("value = %d, ’%c’", tn -> value , tn -> value);43

}44

printf("\n");45

}46

Huffman Compression 407

// list.c1

#include "list.h"2

#include "freq.h"3

#include <stdlib.h>4

ListNode * ListNode_create(TreeNode * tn)5

{6

ListNode * ln = malloc(s i z eo f (ListNode));7

ln -> next = NULL;8

ln -> tnptr = tn;9

return ln;10

}11

// head may be NULL12

// ln must not be NULL13

// ln -> next must be NULL14

ListNode * List_insert(ListNode * head , ListNode * ln)15

{16

i f (head == NULL)17

{18

return ln;19

}20

i f (ln == NULL)21

{22

printf("ERROR! ln is NULL\n");23

}24

i f ((ln -> next) != NULL)25

{26

printf("ERROR! ln -> next is not NULL\n");27

}28

int freq1 = (head -> tnptr) -> freq;29

int freq2 = (ln -> tnptr) -> freq;30

i f (freq1 > freq2)31

{32

// ln should be the first node33

ln -> next = head;34

return ln;35

}36

// ln should be after head37

head -> next = List_insert(head -> next , ln);38

return head;39

}40

// frequencies must be sorted41

ListNode * List_build(CharFreq * frequencies)42

{43

// find the first index whose frequency is nonzero44

int ind = 0;45

while (frequencies[ind].freq == 0)46

{47

ind ++;48

}49

i f (ind == NUMLETTER)50

{51

408 Intermediate C Programming

// no letter appears52

return NULL;53

}54

// create a linked list , each node points to a tree node55

ListNode * head = NULL;56

while (ind < NUMLETTER)57

{58

TreeNode * tn =59

TreeNode_create(frequencies[ind].value ,60

frequencies[ind].freq);61

ListNode * ln = ListNode_create(tn);62

head = List_insert(head , ln);63

ind ++;64

}65

return head;66

}67

void List_print(ListNode * head)68

{69

i f (head == NULL)70

{71

return;72

}73

Tree_print(head -> tnptr , 0);74

List_print(head -> next);75

}76

The following function implements the concept depicted earlier.

// encode.c1

#include "encode.h"2

#include "constant.h"3

#include "freq.h"4

#include "list.h"5

#include <stdio.h>6

#include <strings.h>7

#include <stdlib.h>8

int encode(char * infile , char * outfile , int mode)9

{10

CharFreq frequencies[NUMLETTER];11

// set the array elements to zero12

bzero(frequencies , s i z eo f (CharFreq) * NUMLETTER);13

i f (countFrequency(infile , frequencies) == 0)14

{15

return 0;16

}17

// printFrequency(frequencies);18

sortFrequency(frequencies);19

// printFrequency(frequencies);20

ListNode * head = List_build(frequencies);21

i f (head == NULL)22

{23

// the article is empty24

Huffman Compression 409

return 0;25

}26

// merge the top two list nodes until only one list node27

while ((head -> next) != NULL)28

{29

List_print(head); printf(" -----------\n");30

ListNode * second = head -> next;31

// second must not be NULL , otherwise , will not enter32

ListNode * third = second -> next;33

// third may be NULL34

// get the tree nodes of the first two list nodes35

TreeNode * tn1 = head -> tnptr;36

TreeNode * tn2 = second -> tnptr;37

// remove the first two nodes38

free (head);39

free (second);40

head = third;41

TreeNode * mrg = Tree_merge(tn1 , tn2);42

ListNode * ln = ListNode_create(mrg);43

head = List_insert(head , ln);44

}45

List_print(head);46

return 1;47

}48

Line 46 prints the linked list, and it should have only one list node. Otherwise, the
function should continue inside while. Calling Tree print prints the tree nodes using a
post-order traversal. Below is the output. Note that it matches Fig. 24.7.

freq = 73 value = 104, ’h’

freq = 46 value = 100, ’d’

freq = 23 value = 112, ’p’

freq = 7 value = 84, ’T’

freq = 1 value = 69, ’E’

freq = 2 value = 78, ’N’

freq = 3

freq = 7 value = 71, ’G’

freq = 10

freq = 17

freq = 19 value = 103, ’g’

freq = 36

freq = 59

freq = 105

freq = 178

Fig. 24.8 shows the list of tree nodes as displayed in the debugging program DDD. DDD
can help you visualize how the list nodes and the tree nodes change as the program makes
progress. Fig. 24.9 shows the tree in DDD after the tree has been completely built. It is the
same tree as Fig. 24.7. The visualization function in DDD can help you see the nodes of the
tree.

410 Intermediate C Programming

FIGURE 24.8: A list of tree nodes. This figure shows the list as it is being built. The tree
is the same as the one shown in Fig. 24.4 (c).

24.2.4 Build a Code Book

The next step creates the code book from the tree. We use a two-dimensional array
to store the code book. In each row, the first column stores the character. The remaining
columns store the code, i.e., the bit-sequence for the character. The maximum length of a
code is the tree’s height minus one since the root itself is counted as one when computing
the height. The number of rows is the number of leaf nodes. For the tree in Fig. 24.7, the
height is 8 and there are 8 leaf nodes. In general, the tree’s height is much smaller than the
number of leaf nodes. For example, the tree for the Charter of the United Nations has 57
leaf nodes but the tree’s height is only 12. The following table shows the two-dimensional
array for the code book. Since the codes’ lengths are different, −1 is used to terminate a
sequence of bits.

Huffman Compression 411

FIGURE 24.9: Display the tree in DDD.

index character code
[0] → h 0 −1
[1] → d 1 0 −1
[2] → p 1 1 0 −1
[3] → T 1 1 1 0 0 −1
[4] → E 1 1 1 0 1 0 0 −1
[5] → N 1 1 1 0 1 0 1 −1
[6] → G 1 1 1 0 1 1 −1
[7] → g 1 1 1 1 −1

Do you notice that only one row (for ’h’) has 0 in the first column? The reason for this
is that there is only one node on the left side of the root. There are seven nodes on the
right side of the root and ones are filled to the first column of seven rows. From the root,
after moving down to the right child, there is only one node on the left side (for ’d’). As a
result, only one row has zero in column 2. The other six rows have ones in column 2.

Fig. 24.10 shows the general rule. If there are n leaf nodes on the left side of a node,
zeros are filled in n rows. The column of the zeros is determined by the distance to the
root. If the node is the root itself, then the first column is used. Similarly, if there are m
leaf nodes on the right side, ones are filled in m rows.

The following functions compute the height of a tree and the number of leaf nodes. To
determine a tree’s height, the function recursively computes the heights of the left subtree
and the right subtree. Then the function chooses the taller of the two subtrees. To determine
the number of leaf nodes, the function increments a counter when a leaf node is encountered.
A leaf node is a node that has no children nodes.

s ta t i c int Tree_heightHelper(TreeNode * tn, int height)1

{2

412 Intermediate C Programming

(a) (b)

FIGURE 24.10: If there are n leaf nodes on the left side, zeros should be filled in n rows.
The column is determined by the distance from the root.

i f (tn == 0)3

{4

return height;5

}6

int lh = Tree_heightHelper(tn -> left , height + 1);7

int rh = Tree_heightHelper(tn -> right , height + 1);8

i f (lh < rh)9

{10

return rh;11

}12

i f (lh > rh)13

{14

return lh;15

}16

return lh;17

}18

19

int Tree_height(TreeNode * tn)20

{21

return Tree_heightHelper(tn, 0);22

}23

24

s ta t i c void Tree_leafHelper(TreeNode * tn, int * num)25

{26

i f (tn == 0)27

{28

return;29

}30

// if it is a leaf node , add one31

TreeNode * lc = tn -> left;32

TreeNode * rc = tn -> right;33

i f ((lc == NULL) && (rc == NULL))34

{35

Huffman Compression 413

(* num) ++;36

return;37

}38

Tree_leafHelper(lc, num);39

Tree_leafHelper(rc, num);40

}41

42

int Tree_leaf(TreeNode * tn)43

{44

int num = 0;45

Tree_leafHelper(tn, & num);46

return num;47

}48

The following listing is part of the encode function after the code tree has been built.

// the linked list is no longer needed1

TreeNode * root = head -> tnptr;2

free (head);3

4

// build the code book5

// get the number of leaf nodes6

int numRow = Tree_leaf(root);7

// get the tree’s height8

int numCol = Tree_height(root);9

// numCol should add 1 to accommodate the ending -110

numCol ++;11

// create a 2D array initialize the codes to -112

int * * codebook = malloc(s i z eo f (int *) * numRow);13

int row;14

for (row = 0; row < numRow; row ++)15

{16

codebook[row] = malloc(s i z eo f (int) * numCol);17

int col;18

// initialize to -119

for (col = 0; col < numCol; col ++)20

{21

codebook[row][col] = -1;22

}23

}24

buildCodeBook(root , codebook);25

printCodeBook(codebook , numRow);26

return 1;27

}28

The following listing shows the function buildCodeBook. It uses a recursive helper func-
tion to traverse the tree. When a leaf node is encountered, the character is stored. At line
14, the function uses the very first column (with index zero) to store the characters. The
code book codes start from the second index (i.e., index 1), which is passed as the fourth
argument to buildCodeBookHelper at line 44.

void buildCodeBookHelper(TreeNode * tn , int * * codebook ,1

int * row , int col)2

414 Intermediate C Programming

{3

i f (tn == NULL)4

{5

return;6

}7

// is it a leaf node?8

TreeNode * lc = tn -> left;9

TreeNode * rc = tn -> right;10

i f ((lc == NULL) && (rc == NULL)) // it is a leaf node11

{12

// finish one code13

codebook [*row][0] = tn -> value; // the character14

(* row) ++; // finish one row15

return;16

}17

i f (lc != NULL)18

{19

// populate this column of the entire subtree20

int numRow = Tree_leaf(lc);21

int ind;22

for (ind = * row; ind < (* row) + numRow; ind ++)23

{24

codebook[ind][col] = 0;25

}26

buildCodeBookHelper(lc , codebook , row , col + 1);27

}28

i f (rc != NULL)29

{30

int numRow = Tree_leaf(rc);31

int ind;32

for (ind = * row; ind < (* row) + numRow; ind ++)33

{34

codebook[ind][col] = 1;35

}36

buildCodeBookHelper(rc , codebook , row , col + 1);37

}38

}39

void buildCodeBook(TreeNode * root , int * * codebook)40

{41

int row = 0;42

// column start at 1, column = 0 stores the character43

buildCodeBookHelper(root , codebook , & row , 1);44

}45

46

void printCodeBook(int * * codebook , int numRow)47

{48

int row;49

for (row = 0; row < numRow; row ++)50

{51

// print the character52

printf("%c: ", codebook[row][0]);53

Huffman Compression 415

int col = 1;54

// print the code55

while (codebook[row][col] != -1)56

{57

printf("%d ", codebook[row][col]);58

col ++;59

}60

printf("\n");61

}62

}63

After the code book has been built, it is printed. Below is the output of printCodeBook.

h: 0

d: 1 0

p: 1 1 0

T: 1 1 1 0 0

E: 1 1 1 0 1 0 0

N: 1 1 1 0 1 0 1

G: 1 1 1 0 1 1

g: 1 1 1 1

24.2.5 Compress a File

The file can be compressed once the code book has been created. The compressed file
must include the code book because it is required to decode the file. The code book is
dependent on the characters, and the frequencies of the characters, within the file, and thus
each code book is unique to a given file. Thus, a compressed file has two parts: a header
that represents the code book and the data immediately after the code book. The code can
be expressed in different ways as long as the compression program and the decompression
program agree to the format. This book uses the following way to express the code book:
• The tree is traversed using post-order traversal. As explained earlier, in-order traversal

cannot distinguish different shapes of binary trees. Thus, in-order traversal cannot be
used.
• When encountering a leaf node, ’1’ is printed before printing the character. This ’1’

is a “command” for describing the tree.
• When encountering a non-leaf node, one ’0’ is printed. This is the other “command”.

Commands can be either 1 or 0. Remember, the non-leaf node is encountered after
visiting both the left subtree and the right subtree—this is what a post-order traversal
means.
• One 0 is added after visiting the root. After that, a new line ’\n’ is added.
Fig. 24.11 shows several examples that express the code trees using this format. Note

that if ’\n’ appears in an article, then it is a leaf node in the code tree, and the node is
expressed as 1’\n’. This method can also handle ’1’ and ’0’ in the article. They become 11
and 10. For Fig. 24.1, the header is 1h1d1p1T1E1N01G001g00000.

After the header, the rest of the compressed file is the data. If ’h’ appears in the original
uncompressed file, then it is replaced by the code 0. If ’g’ appears in the original uncom-
pressed file, then it is replaced by the code 1111. To do this efficiently, the program can
build a mapping table from the ASCII value to the indexes in the code book. Below is the
mapping to the code book.

416 Intermediate C Programming

(a) (b) (c)

(d)

FIGURE 24.11: The expressions for the code trees are (a) 1a1b00, (b) 1a1b1c000, (c)
1a1b01c1d000, (d) 1a1b01c1d1e0000. For each tree, the number of 1s is the same as the
number of leaf nodes. The number of 0s is one plus the number of non-leaf nodes.

Character index
E 4
G 6
N 5
T 3
d 1
g 7
h 0
p 2

The listing below shows a sample implementation that makes the header and compresses
the data.

// compress.c1

#include <stdio.h>2

#include "tree.h"3

#include "constant.h"4

s ta t i c void Tree_headerHelper(TreeNode * tn, FILE * outfptr)5

{6

i f (tn == NULL)7

{8

return; // should not get here9

}10

TreeNode * lc = tn -> left;11

TreeNode * rc = tn -> right;12

i f ((lc == NULL) && (rc == NULL))13

{14

// leaf node15

fprintf(outfptr , "1%c", tn -> value);16

return;17

Huffman Compression 417

}18

Tree_headerHelper(lc, outfptr);19

Tree_headerHelper(rc, outfptr);20

fprintf(outfptr , "0");21

}22

void Tree_header(TreeNode * tn, char * outfile)23

{24

FILE * outfptr = fopen(outfile , "w");25

i f (outfptr == NULL)26

{27

return;28

}29

Tree_headerHelper(tn, outfptr);30

fprintf(outfptr , "0\n");31

fclose (outfptr);32

}33

int compress(char * infile , char * outfile ,34

int * * codebook , int * mapping)35

{36

FILE * infptr = fopen(infile , "r");37

i f (infptr == NULL)38

{39

return 0;40

}41

FILE * outfptr = fopen(outfile , "a"); // append42

i f (outfptr == NULL)43

{44

fclose (outfptr);45

return 0;46

}47

while (! feof(infptr))48

{49

int onechar = fgetc(infptr);50

i f (onechar != EOF)51

{52

int ind = mapping[onechar];53

int ind2 = 1;54

while (codebook[ind][ind2] != -1)55

{56

fprintf(outfptr , "%d", codebook[ind][ind2]);57

ind2 ++;58

}59

}60

}61

fclose(infptr);62

fclose(outfptr);63

return 1;64

}65

// **66

// continue encode ...67

Tree_header(root , outfile);68

418 Intermediate C Programming

// mapping from ASCII to the indexes of the code book69

int mapping[NUMLETTER];70

int ind;71

for (ind = 0; ind < NUMLETTER; ind ++)72

{73

mapping[ind] = -1; // initialized to invalid index74

int ind2;75

for (ind2 = 0; ind2 < numRow; ind2 ++)76

{77

i f (codebook[ind2][0] == ind)78

{79

mapping[ind] = ind2;80

}81

}82

}83

compress(infile , outfile , codebook , mapping);84

If this is the input file:

ENNGGGGGGGTTTTTTTgggggggggggggggggggpppppppppppppppppppppppd

dddhhhhhhhhhhhhhhh

hh

This is the compressed file:

1h1d1p1T1E1N01G001g00000

1110100111010111101011110111110111110111110111110111110111110

1111100111001110011100111001110011100111111111111111111111111

110110110

1101

010

1010101010101010101010101010100000000000000000000000000000000

00

There is only one newline ’\n’, which appears after the header. Line breaks are added
so that the very long sequence of 1s and 0s can fit on this page. Please notice that the
header does not include the characters’ frequencies because this information is unnecessary
for decoding.

24.2.6 Compress with Bits

You may have noticed that the “compressed” file is actually longer than the original
file. The original file has 178 bytes and the “compressed” file has 433 bytes. Why? Because
the compressed file uses ’1’ and ’0’ (8-bit characters) to represent single bits. That is a
lot of waste. In order to actually compress the file, only single bits should be used. This
will not reduce the file size to one eighth or the original; however, it should be smaller
than 178 bytes. The compressed file contains more than the bits describing the data. The
compressed file starts with the header that describes the code book. The header includes
the “commands” 1 or 0 to indicate whether the following information is a leaf node or not.
If a command bit is 1, it must be followed by an ASCII character. ASCII codes go from 0
to 127 (this book ignores the characters whose values are greater than 128), and 27 = 128,
which means that 7 bits is sufficient to store a character. This allows us to put a command

Huffman Compression 419

bit and a character into a single byte. Note, however, that if the command bit is 0, then
the rest of the header needs to be shifted right by one bit. If some bits in the last byte are
unused, then these bits are zero. The header in the ASCII format is:

1h1d1p1T1E1N01G001g00000

If each letter uses 7 bits, then the header in the binary format becomes:

11101000 11100100 11110000 11010100 11000101

11001110 01100011 10011100 11100000

For clarity, we have added space between every byte. The first four bytes are generated
by the following rules:

1. The letter ’h’ is 0x68 in hexadecimal and the 7-bit representation is 1101000. The first
byte is 11101000.

2. The letter ’d’ is 0x64 and the 7-bit representation is 1100100. The second byte is
11100100.

3. The letter ’p’ is 0x70 and the 7-bit representation is 1110000. The third byte is
11110000.

4. The letter ’T’ is 0x54 and the 7 bit representation is 1010100. The fourth byte is
11010100.

The first zero appears after ’N’ and it is the seventh byte. This zero is followed by
1. Thus, the first two bits are 01. The next character is ’G’. It is 0x47 and the 7-bit
representation is 01000111. Only six bits can be accommodated in the seventh byte and
this byte is 010100011. The remaining (rightmost) bit enters the leftmost part of the eighth
byte. The following table shows the bits for the header:

C: command D: data U: Unused
1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0
C ← ’h’ → C ← ’d’ →
1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0
C ← ’p’ → C ← ’T’ →
1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0
C ← ’E’ → C ← ’N’ →
0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0
C C ← ’G’ → C C C ← ’g’
1 1 1 0 0 0 0 0

→ C C C C U

One major problem of using bits is that the minimum unit of memory in C is a byte
(unsigned char). The following is a function for writing one bit to a file. This function
accumulates 8 bits in a buffer, and then writes to the file. It is called whenever a bit needs
to be written to the file. The function uses curbyte to keep all of the written bits and when
8 bits have been sent, the function writes a single byte to the file.

#include "utility.h"1

// function for debugging purpose2

s ta t i c void printByte(unsigned char onebyte)3

{4

unsigned char mask = 0x80;5

while (mask > 0)6

{7

printf("%d", (onebyte & mask) == mask);8

mask >>= 1;9

420 Intermediate C Programming

}10

printf("\n");11

}12

// write one bit to a file13

//14

// whichbit indicates which bit this is written to15

// (0 means leftmost , 7 means rightmost)16

//17

// curbyte is the current byte18

//19

// if whichbit is zero , curbyte is reset and bit is put20

// to the leftmost bit21

//22

// when whichbit reaches 7, this byte is written to the23

// file and whichbit is reset24

//25

// the function returns 1 if a byte is written to the file26

// returns 0 if no byte is written27

// -1 if it tries to write and fails28

int writeBit(FILE * fptr , unsigned char bit ,29

unsigned char * whichbit ,30

unsigned char * curbyte)31

{32

i f ((* whichbit) == 0)33

{34

// reset35

* curbyte = 0;36

}37

// shift the bit to the correct location38

unsigned char temp = bit << (7 - (* whichbit));39

* curbyte |= temp; // store the data40

int value = 0;41

i f ((* whichbit) == 7)42

{43

int ret;44

ret = fwrite(curbyte , s i z eo f (unsigned char), 1, fptr);45

// printByte (* curbyte); // for debugging46

i f (ret == 1)47

{48

value = 1;49

}50

e l se51

{52

value = -1;53

}54

}55

* whichbit = ((* whichbit) + 1) % 8;56

return value;57

}58

Huffman Compression 421

This function writes the tree (the header of the file) to the file. When a leaf node is
visited, one command bit (value is 1) is written to the file, followed by the 7 bits of the
character. When a non-leaf node is visited, one commend bit (value is 0) is written to the
file. If some bits of the last byte are not used, these bits are set to zero. The new line
character ends the header.

// print the 7 bits of an ASCII character1

s ta t i c void char2bits(FILE * outfptr , int ch ,2

unsigned char * whichbit ,3

unsigned char * curbyte)4

{5

unsigned char mask = 0x40; // only 7 bits6

while (mask > 0)7

{8

writeBit(outfptr , (ch & mask) == mask ,9

whichbit , curbyte);10

mask >>= 1;11

}12

}13

s ta t i c void Tree_headerHelper(TreeNode * tn, FILE * outfptr ,14

unsigned char * whichbit ,15

unsigned char * curbyte)16

{17

i f (tn == NULL)18

{19

return;20

}21

TreeNode * lc = tn -> left;22

TreeNode * rc = tn -> right;23

i f ((lc == NULL) && (rc == NULL))24

{25

// leaf node26

writeBit(outfptr , 1, whichbit , curbyte);27

char2bits(outfptr , tn -> value , whichbit , curbyte);28

return;29

}30

Tree_headerHelper(lc, outfptr , whichbit , curbyte);31

Tree_headerHelper(rc, outfptr , whichbit , curbyte);32

writeBit(outfptr , 0, whichbit , curbyte);33

}34

void Tree_header(TreeNode * tn, char * outfile)35

{36

FILE * outfptr = fopen(outfile , "w");37

i f (outfptr == NULL)38

{39

return;40

}41

unsigned char whichbit = 0;42

unsigned char curbyte = 0;43

Tree_headerHelper(tn, outfptr , & whichbit , & curbyte);44

while (whichbit != 0)45

422 Intermediate C Programming

{46

// if the current byte has unused bits47

writeBit(outfptr , 0, & whichbit , & curbyte);48

}49

unsigned char newline = ’\n’; // add ’\n’ at the end50

fwrite (& newline , s i z eo f (unsigned char), 1, outfptr);51

fclose (outfptr);52

}53

This is the compress function. It writes the bits to the file. If some bits of the last byte
is unused, these bits are zero.

int compress(char * infile , char * outfile ,1

int * * codebook , int * mapping)2

{3

FILE * infptr = fopen(infile , "r");4

i f (infptr == NULL)5

{6

return 0;7

}8

FILE * outfptr = fopen(outfile , "a"); // append9

i f (outfptr == NULL)10

{11

fclose (outfptr);12

return 0;13

}14

unsigned char whichbit = 0;15

unsigned char curbyte = 0;16

while (! feof(infptr))17

{18

int onechar = fgetc(infptr);19

i f (onechar != EOF)20

{21

int ind = mapping[onechar];22

int ind2 = 1;23

while (codebook[ind][ind2] != -1)24

{25

writeBit(outfptr , (codebook[ind][ind2] == 1),26

& whichbit , & curbyte);27

ind2 ++;28

}29

}30

}31

while (whichbit != 0)32

{33

// if the current byte has unused bits34

writeBit(outfptr , 0, & whichbit , & curbyte);35

}36

fclose(infptr);37

fclose(outfptr);38

return 1;39

}40

Huffman Compression 423

After writing the code book, the header uses the next 4 bytes (32 bits) to write the
length of the article. This is an unsigned integer and can be as large as 232 − 1, more than
four billion. A 1000-page novel has about 500,000 words, a few million characters. Thus, 32
bits are sufficient. After the length, a new line character is written to the file, signifying the
end of the header.

The output file cannot be viewed easily in a text editor, because the data is compressed
in bit representations. We can use the xxd program in Linux to see the hexadecimal values
that represent each byte in the file. The following shows the compressed file in hexadecimal
format using xxd.

0000000: e8e4 f0d4 c5ce 639c e0b2 0000 000a e9d7c.........

0000010: af7d f7df 7df7 ce73 9ce7 3fff ffff ffff .}..}..s..?.....

0000020: ffff ffff 6db6 db6d b6db 6db6 d555 5555m..m..m..UUU

0000030: 5555 5555 5555 5554 0000 0000 0000 0000 UUUUUUUT........

0000040: 00

The following shows the compressed file in binary format using

0000000: 11101000 11100100 11110000 11010100 11000101 11001110

0000006: 01100011 10011100 11100000 10110010 00000000 00000000 c.....

000000c: 00000000 00001010 11101001 11010111 10101111 01111101}

0000012: 11110111 11011111 01111101 11110111 11001110 01110011 ..}..s

0000018: 10011100 11100111 00111111 11111111 11111111 11111111 ..?...

000001e: 11111111 11111111 11111111 11111111 11111111 11111111

0000024: 01101101 10110110 11011011 01101101 10110110 11011011 m..m..

000002a: 01101101 10110110 11010101 01010101 01010101 01010101 m..UUU

0000030: 01010101 01010101 01010101 01010101 01010101 01010101 UUUUUU

0000036: 01010101 01010100 00000000 00000000 00000000 00000000 UT....

000003c: 00000000 00000000 00000000 00000000 00000000

24.3 Decoding

Decoding is the reverse of encoding. The decoder first reconstructs the code tree from
the file header, and then reads the compressed codes of the characters. From the codes, the
decompresser traverses the code tree and outputs the characters stored in the tree’s leaf
nodes. To reconstruct the tree, the decoder needs to know how the tree is represented in the
header. In our case, the code book is encoded using the rules described in Section 24.2.5.
The header contains both commands (1 bit, either 0 or 1) and characters (7 bits). To build
the code tree, the decoder does the following:
• The first bit is a command bit and it is always 1.
• If a command is 1, then the next 7 bits are the value stored in a leaf node. Create a

tree node to store this value. Add this tree node to the beginning of the list. This tree
node is a single-node tree.
• If a command is 0 and the list has only one node, then the complete tree has been

built. If a command is 0 and the list has two or more nodes, then take the first two
nodes from the list, create a tree node as the parent. Add this parent node to the list.
• After the tree is completely built, then read one more bit. If this is not the last

(rightmost) bit of the byte, discard the remaining bits in the byte. The next four

424 Intermediate C Programming

bytes (an unsigned int) store the number of characters in the article. This number
is followed by a new line ’\n’ character.

Consider the header in Section 24.2.6. The decoder reads one bit from the compressed
file. This bit is 1 and then the decoder reads another 7 bits. Fig. 24.12 to Fig. 24.15 show
how to reconstruct the tree from the header. The first character is ’h’. One tree node is
created and it is pointed to by one list node as shown in Fig. 24.12 (a). For decoding, as
long as the tree can be rebuilt, the frequencies of the characters are not needed. Fig. 24.12
(b) shows the list after reading the first two bytes. Fig. 24.12 (c) shows the list after reading
the first six bytes. In Fig. 24.12 (d), the first two tree nodes share the same parent. The
first tree node becomes the right child and the second tree node is the left child, making E
and N share a parent node. This is because the code book was encoded using a post-order
traversal. Please notice the symmetry between this figure and Fig. 24.3. In Fig. 24.12 (e),
this command is followed by 7 bits of data for the character G. Another tree node for G is
added to the list.

(a) (b)

(c)

(d)

(e)

FIGURE 24.12: (a) One tree node is added after reading the first command and the first
character. (b) After reading two bytes. (c) After reading six bytes. (d) The first bit in the
seventh byte is a command and it is 0. (e) The next command bit (the second bit in the
seventh byte) is 1.

Huffman Compression 425

(a)

(b)

(c)

FIGURE 24.13: (a) The next command (the second bit in the eighth byte) is 0. This will
create a common parent for the first two tree nodes. (b) The next command (the third bit
in the eighth byte) is also 0. This will create a common parent for the first two tree nodes.
(c) The next command (the fourth bit in the eighth byte) is 1. This will create a tree node
to store the value g.

426 Intermediate C Programming

(a) (b)

FIGURE 24.14: The remaining commands are 0. Continue building the tree.

(a) (b)

FIGURE 24.15: Finish building the tree.

Huffman Compression 427

The following is the final version of the complete program, for both compression and
decompression.

// main.c1

#include "encode.h"2

#include "constant.h"3

#include <stdlib.h>4

#include <string.h>5

int main(int argc , char ** argv)6

{7

// argv [1]: "e" encode8

// "d" decode9

// argv [2]: name of input file10

// argv [3]: name of output file11

i f (argc != 4)12

{13

return EXIT_FAILURE;14

}15

i f (strcmp(argv[1], "e") == 0)16

{17

encode(argv[2], argv [3]);18

}19

i f (strcmp(argv[1], "d") == 0)20

{21

decode(argv[2], argv [3]);22

}23

return EXIT_SUCCESS;24

}25

// encode.h1

#ifndef ENCODE_H2

#define ENCODE_H3

// encode the input (text) file4

// save the result in the output (binary) file5

// return 0 if cannot read from file or write to file6

// return 1 if success7

int encode(char * infile , char * outfile);8

// decode the input (binary) file9

// save the result in the output (text) file10

// return 0 if cannot read from file or write to file11

// return 1 if success12

int decode(char * infile , char * outfile);13

#endif14

// encode.c1

#include "encode.h"2

#include "constant.h"3

#include "freq.h"4

#include "list.h"5

#include "utility.h"6

#include <stdio.h>7

#include <strings.h>8

428 Intermediate C Programming

#include <stdlib.h>9

#include <values.h>10

#define ENCODEMODE 011

#define DECODEMODE 112

void printFrequencyLatex(CharFreq * frequencies);13

void buildCodeBookHelper(TreeNode * tn , int * * codebook ,14

int * row , int col)15

{16

i f (tn == NULL)17

{18

return;19

}20

// is it a leaf node?21

TreeNode * lc = tn -> left;22

TreeNode * rc = tn -> right;23

i f ((lc == NULL) && (rc == NULL))24

{25

// finish one code26

codebook [*row][0] = tn -> value;27

(* row) ++;28

return;29

}30

i f (lc != NULL)31

{32

// populate this column of the entire subtree33

int numRow = Tree_leaf(lc);34

int ind;35

for (ind = * row; ind < (* row) + numRow; ind ++)36

{37

codebook[ind][col] = 0;38

}39

buildCodeBookHelper(lc , codebook , row , col + 1);40

}41

i f (rc != NULL)42

{43

int numRow = Tree_leaf(rc);44

int ind;45

for (ind = * row; ind < (* row) + numRow; ind ++)46

{47

codebook[ind][col] = 1;48

}49

buildCodeBookHelper(rc , codebook , row , col + 1);50

}51

}52

void buildCodeBook(TreeNode * root , int * * codebook)53

{54

int row = 0;55

// column start at 1 because [0] stores the character56

buildCodeBookHelper(root , codebook , & row , 1);57

}58

void printCodeBook(int * * codebook , int numRow)59

Huffman Compression 429

{60

int row;61

for (row = 0; row < numRow; row ++)62

{63

// print the character64

printf("%c: ", codebook[row][0]);65

int col = 1;66

while (codebook[row][col] != -1)67

{68

printf("%d ", codebook[row][col]);69

col ++;70

}71

printf("\n");72

}73

}74

int compress(char * infile , char * outfile ,75

int * * codebook , int * mapping)76

{77

FILE * infptr = fopen(infile , "r");78

i f (infptr == NULL)79

{80

return 0;81

}82

FILE * outfptr = fopen(outfile , "a"); // append83

i f (outfptr == NULL)84

{85

fclose (outfptr);86

return 0;87

}88

unsigned char whichbit = 0;89

unsigned char curbyte = 0;90

while (! feof(infptr))91

{92

int onechar = fgetc(infptr);93

i f (onechar != EOF)94

{95

int ind = mapping[onechar];96

int ind2 = 1;97

while (codebook[ind][ind2] != -1)98

{99

writeBit(outfptr , (codebook[ind][ind2] == 1),100

& whichbit , & curbyte);101

// fprintf(outfptr , "%d", codebook[ind][ind2]);102

ind2 ++;103

}104

}105

}106

padZero(outfptr , & whichbit , & curbyte);107

fclose(infptr);108

fclose(outfptr);109

return 1;110

430 Intermediate C Programming

}111

// if endec is 0: encode , if it is 1: decode112

// encoded and decode must flip the order of the two113

// subtrees114

s ta t i c ListNode * MergeListNode(ListNode * head , int endec)115

{116

ListNode * second = head -> next;117

// second must not be NULL , otherwise , will not enter118

ListNode * third = second -> next;119

// third may be NULL120

// get the tree nodes of the first two list nodes121

TreeNode * tn1 = head -> tnptr;122

TreeNode * tn2 = second -> tnptr;123

// remove the first two nodes124

free (head);125

free (second);126

head = third;127

TreeNode * mrg;128

i f (endec == ENCODEMODE)129

{130

mrg = Tree_merge(tn1 , tn2);131

}132

e l se133

{134

mrg = Tree_merge(tn2 , tn1);135

}136

ListNode * ln = ListNode_create(mrg);137

i f (endec == ENCODEMODE)138

{139

head = List_insert(head , ln , SORTED);140

}141

e l se142

{143

head = List_insert(head , ln , STACK);144

}145

return head;146

}147

// merge the top two list nodes until only one list node148

s ta t i c TreeNode * list2Tree(ListNode * head)149

{150

// merge the top two list nodes until only one list node151

while ((head -> next) != NULL)152

{153

List_print(head); printf(" -----------\n");154

head = MergeListNode(head , ENCODEMODE);155

}156

List_print(head);157

// the linked list is no longer needed158

TreeNode * root = head -> tnptr;159

// the linked list is no longer needed160

free (head);161

Huffman Compression 431

return root;162

}163

int encode(char * infile , char * outfile)164

{165

CharFreq frequencies[NUMLETTER];166

// set the array elements to zero167

bzero(frequencies , s i z eo f (CharFreq) * NUMLETTER);168

unsigned int numChar =169

countFrequency(infile , frequencies);170

i f (numChar == 0)171

{172

return 0;173

}174

// printFrequency(frequencies);175

sortFrequency(frequencies);176

// printFrequency(frequencies);177

ListNode * head = List_build(frequencies);178

i f (head == NULL)179

{180

// the article is empty181

return 0;182

}183

TreeNode * root = list2Tree(head);184

// build the code book185

// get the number of leaf nodes186

int numRow = Tree_leaf(root);187

// get the tree’s height188

int numCol = Tree_height(root);189

// numCol should add 1 to accommodate the ending -1190

numCol ++;191

// create a 2D array and initialize the codes to -1192

int * * codebook = malloc(s i z eo f (int *) * numRow);193

int row;194

for (row = 0; row < numRow; row ++)195

{196

codebook[row] = malloc(s i z eo f (int) * numCol);197

int col;198

// initialize to -1199

for (col = 0; col < numCol; col ++)200

{201

codebook[row][col] = -1;202

}203

}204

buildCodeBook(root , codebook);205

printCodeBook(codebook , numRow);206

// mapping from ASCII to the indexes of the code book207

int mapping[NUMLETTER];208

int ind;209

for (ind = 0; ind < NUMLETTER; ind ++)210

{211

mapping[ind] = -1; // initialized to invalid index212

432 Intermediate C Programming

int ind2;213

for (ind2 = 0; ind2 < numRow; ind2 ++)214

{215

i f (codebook[ind2][0] == ind)216

{217

mapping[ind] = ind2;218

}219

}220

}221

for (ind = 0; ind < NUMLETTER; ind ++)222

{223

i f (mapping[ind] != -1)224

{225

printf("%c:%d\n", ind , mapping[ind]);226

}227

}228

Tree_header(root , numChar , outfile);229

compress(infile , outfile , codebook , mapping);230

// release memory231

for (ind = 0; ind < numRow; ind ++)232

{233

free (codebook[ind]);234

}235

free (codebook);236

237

Tree_destroy(root);238

return 1;239

}240

s ta t i c TreeNode * readHeader(FILE * infptr)241

{242

int done = 0;243

unsigned char whichbit = 0;244

unsigned char curbyte = 0;245

unsigned char onebit = 0;246

ListNode * head = NULL;247

// decreasing to ensure the list is a stack248

while (done == 0)249

{250

readBit(infptr , & onebit , & whichbit , & curbyte);251

i f (onebit == 1)252

{253

// a leaf node , get 7 move bits254

int bitcount;255

unsigned char value = 0;256

for (bitcount = 0; bitcount < 7; bitcount ++)257

{258

value <<= 1; // shift left by one259

readBit(infptr , & onebit , & whichbit , &260

curbyte);261

value |= onebit;262

}263

Huffman Compression 433

// push a tree node into the list264

TreeNode * tn = TreeNode_create(value , 0);265

ListNode * ln = ListNode_create(tn);266

head = List_insert(head , ln , STACK);267

}268

e l se269

{270

i f (head == NULL)271

{272

printf("ERROR , head should not be NULL\n");273

}274

i f ((head -> next) == NULL)275

{276

// the tree has been completely built277

done = 1;278

}279

e l se280

{281

head = MergeListNode(head , DECODEMODE);282

}283

}284

}285

// unnecessary to read the remaining unused bits286

TreeNode * root = head -> tnptr;287

// the linked list is no longer needed288

free (head);289

return root;290

}291

int decode(char * infile , char * outfile)292

{293

FILE * infptr = fopen(infile , "r");294

i f (infptr == NULL)295

{296

return 0;297

}298

TreeNode * root = readHeader(infptr);299

Tree_print(root , 0);300

// read the number of characters301

unsigned int numChar = 0;302

fread (& numChar , s i z eo f (unsigned int), 1, infptr);303

printf("numChar = %d\n", numChar);304

// read ’\n’305

unsigned char newline;306

fread (& newline , s i z eo f (unsigned char), 1, infptr);307

i f (newline != ’\n’)308

{309

printf("ERROR!\n");310

}311

unsigned char whichbit = 0;312

unsigned char onebit = 0;313

unsigned char curbyte = 0;314

434 Intermediate C Programming

FILE * outfptr = fopen(outfile , "w");315

while (numChar != 0)316

{317

TreeNode * tn = root;318

while ((tn -> left) != NULL)319

{320

// tn is not a leaf node321

readBit(infptr , & onebit , & whichbit , & curbyte);322

i f (onebit == 0)323

{324

tn = tn -> left;325

}326

e l se327

{328

tn = tn -> right;329

}330

}331

// tn is a leaf node332

printf("%c", tn -> value);333

fprintf(outfptr , "%c", tn -> value);334

numChar --;335

}336

Tree_destroy(root);337

fclose(infptr);338

fclose(outfptr);339

return 1;340

}341

// tree.h1

#ifndef TREE_H2

#define TREE_H3

typedef struct treenode4

{5

struct treenode * left;6

struct treenode * right;7

char value; // character8

int freq; // frequency9

} TreeNode;10

TreeNode * TreeNode_create(char val , int freq);11

TreeNode * Tree_merge(TreeNode * tn1 , TreeNode * tn2);12

void Tree_print(TreeNode * tn, int level);13

// find the maximum height of the leaf nodes14

int Tree_height(TreeNode * tn);15

// find the number of leaf nodes16

int Tree_leaf(TreeNode * tn);17

// save the header of a compressed file18

void Tree_header(TreeNode * tn, unsigned int numChar , char *19

outfile);20

void Tree_destroy(TreeNode * tn);21

#endif22

Huffman Compression 435

// tree.c1

#include "tree.h"2

#include "utility.h"3

#include <stdio.h>4

#include <stdlib.h>5

TreeNode * TreeNode_create(char val , int freq)6

{7

TreeNode * tn = malloc(s i z eo f (TreeNode));8

tn -> left = NULL;9

tn -> right = NULL;10

tn -> value = val;11

tn -> freq = freq;12

return tn;13

}14

TreeNode * Tree_merge(TreeNode * tn1 , TreeNode * tn2)15

{16

TreeNode * tn = malloc(s i z eo f (TreeNode));17

tn -> left = tn1;18

tn -> right = tn2;19

tn -> value = 0; // do not care20

tn -> freq = tn1 -> freq + tn2 -> freq;21

return tn;22

}23

// post -order24

void Tree_print(TreeNode * tn, int level)25

{26

i f (tn == NULL)27

{28

return;29

}30

TreeNode * lc = tn -> left; // left child31

TreeNode * rc = tn -> right; // right child32

Tree_print(lc, level + 1);33

Tree_print(rc, level + 1);34

int depth;35

for (depth = 0; depth < level; depth ++)36

{37

printf(" ");38

}39

printf("freq = %d ", tn -> freq);40

i f ((lc == NULL) && (rc == NULL))41

{42

// a leaf node43

printf("value = %d, ’%c’", tn -> value , tn -> value);44

}45

printf("\n");46

}47

s ta t i c int Tree_heightHelper(TreeNode * tn, int height)48

{49

i f (tn == 0)50

{51

436 Intermediate C Programming

return height;52

}53

int lh = Tree_heightHelper(tn -> left , height + 1);54

int rh = Tree_heightHelper(tn -> right , height + 1);55

i f (lh < rh)56

{57

return rh;58

}59

i f (lh > rh)60

{61

return lh;62

}63

return lh;64

}65

int Tree_height(TreeNode * tn)66

{67

return Tree_heightHelper(tn, 0);68

}69

s ta t i c void Tree_leafHelper(TreeNode * tn, int * num)70

{71

i f (tn == 0)72

{73

return;74

}75

// if it is a leaf node , add one76

TreeNode * lc = tn -> left;77

TreeNode * rc = tn -> right;78

i f ((lc == NULL) && (rc == NULL))79

{80

(* num) ++;81

return;82

}83

Tree_leafHelper(lc, num);84

Tree_leafHelper(rc, num);85

}86

int Tree_leaf(TreeNode * tn)87

{88

int num = 0;89

Tree_leafHelper(tn, & num);90

return num;91

}92

// print the 7 bits of an ASCII character93

s ta t i c void char2bits(FILE * outfptr , int ch,94

unsigned char * whichbit ,95

unsigned char * curbyte)96

{97

unsigned char mask = 0x40; // only 7 bits98

while (mask > 0)99

{100

writeBit(outfptr , (ch & mask) == mask ,101

whichbit , curbyte);102

Huffman Compression 437

mask >>= 1;103

}104

}105

s ta t i c void Tree_headerHelper(TreeNode * tn,106

FILE * outfptr ,107

unsigned char * whichbit ,108

unsigned char * curbyte)109

{110

i f (tn == NULL)111

{112

return; // should not get here113

}114

TreeNode * lc = tn -> left;115

TreeNode * rc = tn -> right;116

i f ((lc == NULL) && (rc == NULL))117

{118

// leaf node119

writeBit(outfptr , 1, whichbit , curbyte);120

char2bits(outfptr , tn -> value , whichbit , curbyte);121

return;122

}123

Tree_headerHelper(lc, outfptr , whichbit , curbyte);124

Tree_headerHelper(rc, outfptr , whichbit , curbyte);125

writeBit(outfptr , 0, whichbit , curbyte);126

}127

void Tree_header(TreeNode * tn, unsigned int numChar ,128

char * outfile)129

{130

FILE * outfptr = fopen(outfile , "w");131

i f (outfptr == NULL)132

{133

return;134

}135

unsigned char whichbit = 0;136

unsigned char curbyte = 0;137

Tree_headerHelper(tn, outfptr , & whichbit , & curbyte);138

// add one more 0 to end the header139

writeBit(outfptr , 0, & whichbit , & curbyte);140

padZero(outfptr , & whichbit , & curbyte);141

// write the number of characters142

fwrite (& numChar , s i z eo f (unsigned int), 1, outfptr);143

// add ’\n’ at the end of the header144

unsigned char newline = ’\n’;145

fwrite (& newline , s i z eo f (unsigned char), 1, outfptr);146

fclose (outfptr);147

}148

void Tree_destroy(TreeNode * tn)149

{150

i f (tn == NULL)151

{152

return;153

438 Intermediate C Programming

}154

Tree_destroy(tn -> left);155

Tree_destroy(tn -> right);156

free (tn);157

}158

// list.h1

#ifndef LIST_H2

#define LIST_H3

#include "tree.h"4

#include "constant.h"5

#include "freq.h"6

#include <stdio.h>7

#define QUEUE 08

#define STACK 19

#define SORTED 210

typedef struct listnode11

{12

struct listnode * next;13

TreeNode * tnptr;14

} ListNode;15

ListNode * List_build(CharFreq * frequencies);16

ListNode * ListNode_create(TreeNode * tn);17

// The mode is QUEUE , STACK , or SORTED18

ListNode * List_insert(ListNode * head , ListNode * ln, int19

mode);20

void List_print(ListNode * head);21

#endif22

// list.c1

#include "list.h"2

#include "freq.h"3

#include <stdlib.h>4

ListNode * ListNode_create(TreeNode * tn)5

{6

ListNode * ln = malloc(s i z eo f (ListNode));7

ln -> next = NULL;8

ln -> tnptr = tn;9

return ln;10

}11

// head may be NULL12

// ln must not be NULL13

// ln -> next must be NULL14

ListNode * List_insert(ListNode * head , ListNode * ln,15

int mode)16

{17

i f (ln == NULL)18

{19

printf("ERROR! ln is NULL\n");20

return NULL;21

}22

Huffman Compression 439

i f ((ln -> next) != NULL)23

{24

printf("ERROR! ln -> next is not NULL\n");25

}26

i f (head == NULL)27

{28

return ln;29

}30

i f (mode == STACK)31

{32

ln -> next = head;33

return ln;34

}35

i f (mode == QUEUE)36

{37

head -> next = List_insert(head -> next , ln , mode);38

return head;39

}40

// insert in increasing order41

int freq1 = (head -> tnptr) -> freq;42

int freq2 = (ln -> tnptr) -> freq;43

i f (freq1 > freq2)44

{45

// ln should be the first node46

ln -> next = head;47

return ln;48

}49

// ln should be after head50

head -> next = List_insert(head -> next , ln , mode);51

return head;52

}53

// frequencies must be sorted54

ListNode * List_build(CharFreq * frequencies)55

{56

// find the first index whose frequency is nonzero57

int ind = 0;58

while (frequencies[ind].freq == 0)59

{60

ind ++;61

}62

i f (ind == NUMLETTER)63

{64

// no letter appears65

return NULL;66

}67

// create a linked list , each node points to a tree node68

ListNode * head = NULL;69

while (ind < NUMLETTER)70

{71

TreeNode * tn =72

TreeNode_create(frequencies[ind].value ,73

440 Intermediate C Programming

frequencies[ind].freq);74

ListNode * ln = ListNode_create(tn);75

head = List_insert(head , ln , SORTED);76

ind ++;77

}78

return head;79

}80

void List_print(ListNode * head)81

{82

i f (head == NULL)83

{84

return;85

}86

Tree_print(head -> tnptr , 0);87

List_print(head -> next);88

}89

// utility.h1

#ifndef UTILITY_H2

#define UTILITY_H3

#include <stdio.h>4

// write one bit to a file5

6

// whichbit indicates which bit this is written to (0 means7

// leftmost , 7 means rightmost)8

// curbyte is the current byte9

//10

// if whichbit is zero , curbyte is reset and bit is put11

// to the leftmost bit12

//13

// when which bit reaches 7, this byte is written to the14

// file and whichbit is reset15

//16

// the function returns 1 if a byte is written to the file17

// returns 0 if no byte is written18

// -1 if it tries to write and fails19

int writeBit(FILE * fptr , unsigned char bit ,20

unsigned char * whichbit , unsigned char *21

curbyte);22

// if * whichbit is not 0, some bits of * curbyte are not used23

// fill these bits by 0 and write the byte to the file24

int padZero(FILE * fptr , unsigned char * whichbit ,25

unsigned char * curbyte);26

27

int readBit(FILE * fptr , unsigned char * bit ,28

unsigned char * whichbit ,29

unsigned char * curbyte);30

#endif31

// utility.c1

#include <stdio.h>2

Huffman Compression 441

#include "utility.h"3

int padZero(FILE * fptr , unsigned char * whichbit ,4

unsigned char * curbyte)5

{6

int rtv;7

while ((* whichbit) != 0)8

{9

rtv = writeBit(fptr , 0, whichbit , curbyte);10

i f (rtv == -1)11

{12

return -1;13

}14

}15

return rtv;16

}17

int readBit(FILE * fptr , unsigned char * bit ,18

unsigned char * whichbit , unsigned char * curbyte)19

20

{21

int ret = 1;22

i f ((* whichbit) == 0)23

{24

// read a byte from the file25

ret = fread(curbyte , s i z eo f (unsigned char), 1, fptr);26

}27

i f (ret != 1)28

{29

// read fail30

return -1;31

}32

// shift the bit to the correct location33

unsigned char temp = (* curbyte) >> (7 - (* whichbit));34

temp = temp & 0X01; // get only 1 bit , ignore the others35

// increase by 136

* whichbit = ((* whichbit) + 1) % 8;37

* bit = temp;38

return 1;39

}40

This is the Makefile for the program.

CFLAGS = -g -Wall -Wshadow1

GCC = gcc $(CFLAGS)2

SRCS = main.c encode.c freq.c tree.c list.c utility.c3

OBJS = $(SRCS :%.c=%.o)4

VALGRIND = valgrind --leak -check=full --tool=memcheck5

--verbose --log -file6

7

code: $(OBJS)8

$(GCC) $(OBJS) -o code9

10

test1: code11

442 Intermediate C Programming

./code e input1 compress112

$(VALGRIND)=logenc1 ./code e input1 compress113

./code d compress1 output114

$(VALGRIND)=logdec1 ./code d compress1 output115

echo # add a blank line16

diff input1 output117

18

test2: code19

./code e input2 compress220

$(VALGRIND)=logenc2 ./code e input2 compress221

./code d compress2 output222

$(VALGRIND)=logdec2 ./code d compress2 output223

echo # add a blank line24

diff input2 output225

26

test3: code27

./code e input3 compress328

$(VALGRIND)=logenc3 ./code e input3 compress329

./code d compress3 output330

$(VALGRIND)=logdec3 ./code d compress3 output331

echo # add a blank line32

diff input3 output333

34

.c.o:35

$(GCC) $(CFLAGS) -c $*.c36

37

clean:38

rm -f *.o a.out code log*39

This is the most complex program in this book. It integrates almost all topics in this
book. Please study this program carefully. It is a bridge for you from being an intermediate
programmer to becoming an advanced programmer.

Appendix A

Linux

A.1 Options for Installing Linux . 443
A.2 Getting Ubuntu Linux . 444
A.3 Downloading and Installing VirtualBox . 445
A.4 Install and Update Linux . 445
A.5 Install Programming Tools . 445

All examples in this book are tested in the Linux programming environment. Linux is a
widely used operating system. It is free in two senses. First there is no need to pay anyone
to get the operating system and many tools for Linux. Second, all the source code for Linux
and many associated tools is freely available. Furthermore, this code can be modified and
used by anyone, for personal or business reasons. Google’s Search Engine uses Linux. So
does the software on the International Space Station. The mobile operating system Android
is based on Linux. Some estimate that over 60% of web servers run UNIX-based operating
systems, and among them Linux dominates.

Sometimes people are surprised by how widely Linux is used. Consider Amazon EC2
(elastic cloud computing). It gives the options for Linux and Windows. For the same ca-
pabilities (measured by the number of virtual processors and the amount of memory), the
price for a Linux instance is about half of the price for Windows. Many software companies,
such as Oracle and SAP, sell programs running on Linux. Why? Because many customers
prefer to use Linux for a variety of reasons. If a company does not support Linux, then this
company forgoes a large market segment. Linux is widely used in universities and compa-
nies. The skills learned using Linux are widely applicable. Learning Linux is important for
developing an understanding of computing in general, and is especially important in some
business and scientific fields.

A.1 Options for Installing Linux

There are several options for setting up a Linux programming environment:
• Buy a computer that already has Linux installed. Many computer vendors have this

option. This is the easiest solution.
• Build your own desktop computer: You can buy a motherboard, a processor, a hard

disk, a display, ... After assembling the hardware, then install Linux. This is great
experience for understanding the components of a computer. You will know precisely
what is inside your computer.
• Install Linux side-by-side with an existing operating system (also called dual boot).

This is possible if your computer already has another operating system (such as Mi-
crosoft Windows or MacOS). MacOS and Linux are both “UNIX-based” but some of
the fundamentals are different. As of writing this book, some programming tools are

443

444 Intermediate C Programming

more stable in Linux than in MacOS. Therefore, I recommend installing Linux even
if you already have MacOS. The advantage of dual booting is that each operating
system has the resources of the entire computer. The disadvantage is that it is more
difficult for the operating systems to share data and co-operate, since only one operat-
ing system can be used at a time. Changing the operating system requires restarting
the computer.
• Dual booting used to be more popular than it is today. Now we have access to high

quality and affordable (or free) virtual machines that are well supported by special
hardware. This is my preferred option because of the convenience, and also the wide-
spread usage in industry. A virtual machine is a computer program that runs an
operating system inside of it. The operating system thinks it is running directly on
the hardware, but it is actually embedded in a type of container. The vast majority
of modern computers have special hardware to support virtual machines. The two
operating systems run simultaneously, and it is often easy to move data between the
two “computers”—either moving files, or simply using the clipboard to copy data
from a Windows or MacOS program and paste it into a running Linux program. The
two operating systems must share the resources of your computer. If your computer
has less than 4GB of memory, you may notice occasional slowdown and you should
consider dual booting.
Assuming that your computer has 4GB or more memory, and is currently running
Windows, then when we install a virtual machine, Windows is called the host operating
system. The operating system (Linux) inside the virtual machine is called the guest
operating system. There are several choices for a virtual machine. VirtualBox from
Oracle is an excellent choice and it is free.

If you choose dual boot or virtual machine, you should always save the files already in
your computer before installing Linux. It is possible (even though unlikely) that something
may be wrong and you may lose the files in your computer.

After choosing how to install Linux, you now have to choose which distribution of Linux
you want to use. The common choices are: Fedora, Ubuntu, Mint, and SUSE. This chapter
uses Ubuntu as an example, but all of the distributions listed above are good choices. The
following sections explain how to install Linux as dual boot and how to install Linux inside
Virtualbox.

A.2 Getting Ubuntu Linux

To install Linux, first download the most recent image. An image contains all the files
needed for installation. The file should have an .iso extension. Please go to web site
www.ubuntu.com. Select the correct iso file and click “Download”. The size of a CD iso file
is approximately 700 MB. It is helpful to find a fast network connection before downloading
the file. Please select the correct version for your computer. If your computer is bought
after 2009, then it is likely to use a 64-bit CPU and thus you should download the 64-bit
installation ISO file.

If you want to make the computer dual boot, then you need to find a flash drive that
is at least 700 MB. The iso file cannot be copied onto the flash drive. Instead a special
program is needed to rewrite all of the data on the flash drive such that it looks like what
the iso file specifies. This will make the flash drive bootable. If you search on-line “ISO
to USB”, then you can easily find a program to do this. After you make the flash drive

Linux 445

bootable, keep the flash drive plugged into the computer and restart the computer. When
the computer restarts, and for a few seconds, press F2 (or F10 or F12, depending on the
computer’s firmware or BIOS, namely basic input/output system) to change the computer’s
settings. You will need to select the flash drive as the first choice for booting the computer.
Save the change and restart the computer. Skip the next section and go directly to Section
A.4.

A.3 Downloading and Installing VirtualBox

The following pages explain how to install VirtualBox. Please go to the web site www.

virtualbox.org. Click “Downloads” and choose the correct program for your computer.
For example, if your computer runs Windows, then you should select “Windows hosts”.
After downloading the VirtualBox program, run the program. In most cases, you can use
the default settings by clicking “Next” or “Yes”. Your computer will disconnect from the
network for a short moment during installation. This is expected.

A.4 Install and Update Linux

If you use VirtualBox, you need to start the virtual machine. It will ask for the location
of the iso file downloaded earlier. The virtual machine boots with a starting page. If you
do not see this page, try to download a 32-bit iso file and use it in the previous step.
Click “Install Ubuntu”. If you use dual boot, you will see the same starting page, without
the VirtualBox window. Follow the instructions to install Linux. In VirtualBox, install
the “Guest Additions”. The Guest Additions allows Linux to use the full screen of your
computer. It also allows for seamless use of the mouse between the guest and host operating
systems. Ubuntu will inform you if any of the installed programs needs an update. In some
cases, after installing the updates and restarting the virtual computer, you will need to
install the Guest Addition again.

A.5 Install Programming Tools

This book introduces some programming tools. Please install the following tools: emacs,
valgrind, ddd, and git. Click the “Software Center” at the toolbar on the left side. Search
“emacs” and install it. I use emacs because it can automatically indent C programs and
makes the programs easier to read. This is another example when using the right tools is
important. Correct indentation helps prevent careless mistakes, such as forgetting to add
the closing braces }. To indent your program in emacs, follow this procedure: Select “Edit”
at the menubar → click “Select All” → press the Tab key → save the file. These steps are
all you need to do for indenting your programs.

Now you have a computer running Linux, and have also installed some programming
tools. This chapter gives a quick overview about how to install and update Linux, as well

446 Intermediate C Programming

as to install new programs. There is a lot of information available on-line. Be aware that
instructions change over time, and the Internet keeps a lot of old and outdated information
around. It is important to find up-to-date instructions when managing Linux. Linux is widely
used in business and science for good reasons: Linux is powerful and flexible. Spend some
time to become familiar with Linux and the knowledge can help you understand computers
more deeply.

Appendix B

Version Control

B.1 Github.com . 447
B.2 Cloning a Repository and Modifying a File . 447
B.3 Adding Files and Directories . 449
B.4 Revising a Program . 449

A complex program cannot be finished in a single day. Furthermore, it is usually released
to customers in stages by creating different versions of the same program. Version control
is a method keeping track of all of the different versions of the many files used in a software
project. Version control can back up files and can also manage the files written by a team
of people. Many tools for version control have been developed, for example: CVS, SVN,
mercurial, SourceSafe, and git.

B.1 Github.com

This book uses github.com because it is a popular web site that offers free version
control service for students and teachers. After creating an account, use the web interface
to create a new repository (also called repo).

B.2 Cloning a Repository and Modifying a File

After creating a repository, start a terminal in Linux and type:

$ git clone https://account:password@github.com/.../demorepo.git

Here account is your account name and password is your password. Replace github.

com/.../demorepo.git with the correct path for your repository. You will see something
like the following on the Linux terminal:

Cloning into ’demorepo’...

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (4/4), done.

Type the ls command in terminal and you can see the demorepo directory and the
README file. There is also a hidden file called .gitignore. When a file begins with a period,

447

448 Intermediate C Programming

FIGURE B.1: Create a new repository. In this example, I call it “demorepo”. As a teacher,
I can create a free private repository. Check the box of “Initialize this repository with a
README”. Add .gitignore for C. This will ignore files that are not supposed to be in the
repository. Click “Create repository”.

the file is hidden. To see hidden files, please type ls -a. Use your preferred text editor to
add one line into README. Type the git diff command and the difference is shown between
the edited file, and the version of the file before changes. In particular, the line just added
appears with the “+” in front of it. Type this command to commit the change:

$ git commit README.md

Please give a meaningful comment. The comment becomes a part of the history in the
repository. Meaningful comments are required when working with a team. Comments help
document the progression of the program, and also make it easier to track old versions of
files. After committing the changes, the new version is stored. You can see the history using
this command:

$ git log

Creating a new version allows you to roll back to previous versions when necessary.
However, if your computer is broken, then you will lose everything in the computer. To
protect your programs, you want to keep another copy outside of your computer. You can
use github.com to store the repository using this command:

$ git push

If you are the only person working on the project and you have only one computer,
you can push right after commit. If you are working on a team project or you have several
computers, you should do

Version Control 449

$ git pull

before push to ensure that you have the latest version before pushing. Now you can go to
github.com and see the history of the repository in github.com.

B.3 Adding Files and Directories

You can add files and directories by using the git add command. The following com-
mands add a file (called prog1.c) to the repository and push it to github.com.

$ git add prog1.c
$ git commit -m ”add a program” prog1.c
$ git push

B.4 Revising a Program

Version control is designed to keep track of changes. Try adding two lines to prog1.c

and then type the following commands:

$ git commit -m ”added two lines” prog1.c
$ git push

Now remove some lines and type the following commands:

$ git commit -m ”changed some lines” prog1.c
$ git push

The history of changes can be seen at github.com. If a line is added, then a “+” sign
appears in front of the line. If a line is deleted, then a “−” sign appears in front of the
line. Using git, you can keep track of changes line-by-line. It is necessary to take small
steps to build a complex program. A professional programmer adds one function at a time,
makes sure it works, and commits a new version before adding another function. Sometimes,
the functions written earlier require improvement. Perhaps the function no longer works as
expected due to some other changes. If you do not use version control, you are out of luck.
It is difficult to remember what changes have been made. Version control can show which
lines have been changed since the previous commit, and thus saves a lot of time. Version
control is very helpful when you learn a new programming language. You can change your
programs without the fear of losing previously working functions. If you make a mistake,
you can easily roll back to an earlier version. Version control can help only if you commit
often. It is quite reasonable if you commit every hour, or even every few minutes. If you work
in a team, you may need to create a branch so that you can commit incomplete functions
without affecting the other people. You can find many tutorials on the Internet about how
to use git. Spend some time learning git and you can save a lot of time managing your
software projects.

This page intentionally left blankThis page intentionally left blank

Appendix C

Integrated Development Environments
(IDE)

C.1 Eclipse . 451
C.2 Create and Build a Project . 452
C.3 Debugging the Program . 453

An Integrated Development Environment (IDE) is a program that integrates different pro-
gramming tools together into a unified user interface. In this chapter we illustrate the notion
of an IDE with Eclipse. Fig. C.1 shows the web site. This chapter uses many screenshots to
visually explain various steps when using Eclipse.

FIGURE C.1: Eclipse (www.eclipse.org) is one of the most popular IDEs.

451

452 Intermediate C Programming

C.1 Eclipse

There are several ways to install Eclipse. One is to download Eclipse from the web site.
Another is to use Ubuntu’s Software Center. After starting Eclipse, it asks you for the loca-
tion of a “workspace”. This is a folder where you keep your Eclipse programming projects.
The default location is a directory called workspace. Eclipse has a plug-in architecture for
adding features. This is one reason (possibly the most important) why Eclipse is a popular
IDE. To install a plug-in, click Help at the menubar and select Install New Software. Select
Programming Languages and C/C++ Development Tools, as shown in Fig. C.2. Eclipse
does not support the C programming language until this plugin is installed.

FIGURE C.2: Select C/C++ Development Tools.

C.2 Create and Build a Project

To create a new programming project, first click File on the menubar, and select New
and then Project. Fig. C.3 to Fig. C.11 show the procedure of building a program in Eclipse.

Integrated Development Environments (IDE) 453

FIGURE C.3: Select Makefile Project and call the project “prog1”. Click Finish.

FIGURE C.4: Add a header file.

454 Intermediate C Programming

FIGURE C.5: Call the header file prog1.h. Eclipse automatically adds #ifndef, #define,
and #endif to the header file. Add two function declarations to the header file.

FIGURE C.6: Add a new source file.

C.3 Debugging the Program

Eclipse can simplify many steps in developing a C program. Fig. C.12 to Fig. C.17 show
how to run and debug a program.

Integrated Development Environments (IDE) 455

FIGURE C.7: You can customize the code formatting style by clicking Windows and
selecting Preferences. Choose a style you like. You can experiment with different styles and
decide which suits your preferences. This example uses the GNU style.

FIGURE C.8: Set the project’s property. Depending on your version of Eclipse and the
installed plug-ins, the build environment may already be set up correctly. Click Project (on
the menubar) and select Build Project. If Eclipse says “no rule to make target all”, then
you need to set the build environment. Select “Generate Makefiles automatically” and click
Apply.

456 Intermediate C Programming

FIGURE C.9: When you click Project and select Build Project, Eclipse will say “undefined
reference to addtwo” and “undefined reference to subtwo”. This should be expected because
these functions have not been implemented. Eclipse’s error message is displayed in the
Console. Eclipse also highlights the two lines that have the errors.

FIGURE C.10: To solve the build problem, we add another source file called addsub.c

and in this file we define the two functions.

Integrated Development Environments (IDE) 457

FIGURE C.11: When you build the project, Eclipse should say that the project is built
successfully. A valid Makefile is automatically generated by Eclipse.

FIGURE C.12: Running: Click Run in the menubar and then select Run.

458 Intermediate C Programming

FIGURE C.13: The program’s output is shown in the Console.

FIGURE C.14: Eclipse uses gdb to debug programs, and also provides a convenient user
interface. To debug a program, click Run and select Debug.

Integrated Development Environments (IDE) 459

FIGURE C.15: Eclipse starts the program and stops at the first statement in main. This
is denoted by the arrow that is shown at line 13.

FIGURE C.16: Eclipse knows how to communicate with gdb, and provides a convenient
method for common debugging commands such as step over, step into, and toggle break-
point. Move the mouse cursor to line 18 in the source code, and toggle line breakpoint.

460 Intermediate C Programming

FIGURE C.17: Click Window, Show View, and Variables. Here you can see the values of
variables as the code executes. Note that the value of c is 96.

K25074

w w w . c r c p r e s s . c o m

Intermediate C Programming
Lu

“… an excellent entryway into practical software development practices … I
wished I had this book some 20 years ago … the hands-on examples … are eye
opening. I recommend this book to anyone who needs to write software beyond
the tinkering level.”
—From the Foreword by Gerhard Klimeck, Reilly Director of the Center for Predic-
tive Materials and Devices and the Network for Computational Nanotechnology
and Professor of Electrical and Computer Engineering, Purdue University; Fellow
of the IOP, APS, and IEEE

“This well-written book provides the necessary tools and practical skills to turn
students into seasoned programmers. It not only teaches students how to write
good programs but, more uniquely, also teaches them how to avoid writing bad
programs. The inclusion of Linux operations and Versioning control as well as the
coverage of applications and IDE build students’ confidence in taking control over
large-scale software developments.”
—Siau Cheng Khoo, Ph.D., National University of Singapore

“This book is unique in that it covers the C programming language from a bottom-
up perspective, which is rare in programming books. … students immediately
understand how the language works from a very practical and pragmatic per-
spective.”
—Niklas Elmqvist, Ph.D., Associate Professor and Program Director, Master of
Science in Human–Computer Interaction, University of Maryland

Intermediate C Programming provides a stepping-stone for intermediate-lev-
el students to go from writing short programs to writing real programs well. It
shows students how to identify and eliminate bugs, write clean code, share code
with others, and use standard Linux-based tools, such as ddd and valgrind. The
text enhances their programming skills by explaining programming concepts and
comparing common mistakes with correct programs. It also discusses how to use
debuggers and the strategies for debugging as well as studies the connection
between programming and discrete mathematics.

Computer Science & Engineering

K25074_cover.indd 1 5/13/15 8:43 AM

	Front Cover
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	Author, Reviewers, and Artist
	Rules in Software Development
	Source Code
	I. Computer Storage: Memory and File
	1. Program Execution
	2. Stack Memory
	3. Prevent, Detect, and Remove Bugs
	4. Pointers
	5. Writing and Testing Programs
	6. Strings
	7. Programming Problems and Debugging
	8. Heap Memory
	9. Programming Problems Using Heap Memory
	10. Reading and Writing Files
	11. Programming Problems Using File

	II. Recursion
	12. Recursion
	13. Recursive C Functions
	14. Integer Partition
	15. Programming Problems Using Recursion

	III. Structure
	16. Programmer-Defined Data Types
	17. Programming Problems Using Structure
	18. Linked Lists
	19. Programming Problems Using Linked List
	20. Binary Search Trees
	21. Parallel Programming Using Threads

	IV. Applications
	22. Finding the Exit of a Maze
	23. Image Processing
	24. Huffman Compression

	A. Linux
	B. Version Control
	C. Integrated Development Environments (IDE)

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.000 x 10.000 inches / 177.8 x 254.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167
 None
 Up
 72.0000
 0.0000

 Both
 43
 AllDoc
 43

 CurrentAVDoc

 Uniform
 216.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 16
 498
 497
 498

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 18.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167
 None
 Up
 72.0000
 0.0000

 Both
 43
 AllDoc
 43

 CurrentAVDoc

 Smaller
 18.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 38
 498
 497
 498

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167
 Fixed
 Right
 7.2000
 0.0000

 Odd
 43
 AllDoc
 43

 CurrentAVDoc

 None
 18.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 116
 498
 496
 249

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: none
 Shift: move right by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167
 Fixed
 Right
 7.2000
 0.0000

 Even
 43
 AllDoc
 43

 CurrentAVDoc

 None
 18.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 121
 498
 497
 249

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend left edge by 9.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167
 None
 Right
 7.2000
 0.0000

 Both
 43
 AllDoc
 43

 CurrentAVDoc

 Bigger
 9.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 218
 498
 497
 498

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend right edge by 9.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167
 None
 Right
 7.2000
 0.0000

 Both
 43
 AllDoc
 43

 CurrentAVDoc

 Bigger
 9.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 218
 498
 497
 498

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 9.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167
 None
 Right
 7.2000
 0.0000

 Both
 43
 AllDoc
 43

 CurrentAVDoc

 Smaller
 9.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 44
 498
 497
 498

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 9.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150416132928
 720.0000
 7 x 10 in
 Blank
 504.0000

 Tall
 1
 0
 No
 747
 167

 None
 Right
 7.2000
 0.0000

 Both
 43
 AllDoc
 43

 CurrentAVDoc

 Smaller
 9.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 44
 498
 497
 498

 1

 HistoryList_V1
 qi2base

		2015-06-24T08:07:11+0000
	Preflight Ticket Signature

