
For next day – Isaac Shoebottom 

Regions of memory: 
Executable: This stores the executable code section of the program. Mostly assembly 

Data: Strings and literal data are stored here. If you write a printf() with a string literal that character 

data is stored here. 

Heap: This is where dynamically allocated variables are stored. Any time you use malloc(), the 

amount you allocate is stored here. 

Stack: This is where local variables are stored. Any time you declare an int or a char or any primitive, 

it goes here, assuming it is in a function. 

How the stack works: 
The stack works in the way that it sounds, each new stack frame is put on top of each other, being 

popped off of it when they are done. When a function is called, it gets a return value, that tells it 

where to go when the function is finished. When the function finished the stack frame is removed 

and the address pointer is moved down. In the stack, generally variables are stored starting at 

locations higher in the address space. For example, if you were to assign 4 chars to an address space 

of 0xFFFF it would go 0xFFFF to 0xFFFE to 0xFFFD to 0xFFFC. Each of these addresses would hold a 

char's size (1 byte). After the program ends the stack is eventually deallocated by the operating 

system. 

Stack frame of program: 
Frame Symbol Address Value 

main iArr 0xFFE3 garbage 
d 0xFFF3 garbage 

i 0xFFFB garbage 

c 0xFFFF garbage 

 


	For next day – Isaac Shoebottom
	Regions of memory:
	How the stack works:
	Stack frame of program:


