{ "cells": [ { "cell_type": "markdown", "source": [ "# Question 6\n", "Let $S = \\{0,1\\}^*$ be the set of all strings of zero and ones, which includes the empty string $\\epsilon$.\n", "Let $h : S \\rightarrow \\mathbb{Z}^*$ be the function defined by $h(x)$ equal the number of zeros in $x$ multiplied by the number of ones in $x$\n", "For example, $h(00100011) = 5 \\times 3 = 15, and h(111) = 0 \\times 3 = 0$\n", "\n", "(a) Is $h$ one-to-one? No, because both strings $001$ and $110$ map to the same value, $2$\n", "$2 \\times 1 = 2$ and $1 \\times 2 = 2$\n", "\n", "(b) Is $h$ onto? Yes, because you can find every non-negative integer by multiplying any number of ones by one zero $(1 \\times 1), (1 \\times 2), ...$\n", "Let the number of zeros be exactly 1, and n be the number of ones, and m be any non-negative integer\n", "$h(n) = m, 1n = m, n = m$ " ], "metadata": { "collapsed": false }, "id": "b67364155fcb1072" }, { "cell_type": "markdown", "source": [ "
" ], "metadata": { "collapsed": false }, "id": "ec5269e5b4749d08" }, { "cell_type": "markdown", "source": [ "# Question 8\n", "(a)\n", "This function is not one-to-one (111110, 1111100 are both 5)\n", "This function is onto (10, 110, 1110, 11...0 is all non-negative integers)\n", "\n", "(b)\n", "This function is not one-to-one (11111, 01111 are both 1)\n", "This function is onto (All strings are mapped to, as you can simply pad any character with any 4 characters first)\n", "\n", "(c)\n", "This function is not one-to-one (Quebec, Yukon both are 0)\n", "This function is not onto (None of the provinces contain 3 or 5 a's" ], "metadata": { "collapsed": false }, "id": "ead9052998c5edf6" }, { "cell_type": "markdown", "source": [ "
" ], "metadata": { "collapsed": false }, "id": "f27520443479cce9" }, { "cell_type": "markdown", "source": [ "# Question 9\n", "Consider the relation $R$ defined on the set $\\mathbb{Z}$ as follows:\n", "$$R = \\{(m,n) | m,n \\in \\mathbb{Z}, mn < 0\\}$$\n", "\n", "(a) Is the relation reflexive? No\n", "For every integer $x$, $x \\times x = x^2$, and by the definition of squares, can never be less than zero\n", "\n", "(b) Is the relation symmetric? Yes\n", "Let $x, y$ be a pair of integers in the relation and $z$ be the product of $x and y$, so $x \\times y = -z$\n", "Since multiplication is commutative, the position of $x$ and $y$ do not matter, so $(x,y)$ and $(y,x)$ are in the relation\n", "(Both $x \\times y$ and $y \\times x$ equal $-z$)\n", "\n", "(c) Is the relation transitive? No\n", "Let $a = 1, b = -2, c = 3$\n", "$1 \\times -2 = -2$ and $-2 \\times 3 = -6$, however $1 \\times 3 = 3$, which is $> 0$\n", "$\\therefore$ this relation is not transitive\n", "\n", "(d) Is this an equivalence relation? No, because these three conditions are not met" ], "metadata": { "collapsed": false }, "id": "874c8dbcc345edad" }, { "cell_type": "markdown", "source": [ "
" ], "metadata": { "collapsed": false }, "id": "ca477f12a96f397a" }, { "cell_type": "markdown", "source": [ "# Question 11\n", "Consider the relation $R$ defined on the set $\\mathbb{Z}$ as follows:\n", "$$\\forall m,n \\in \\mathbb{Z}, (m,n) \\in R \\text{ if and only if } m + n = 2k \\text{ for some integer } k$$\n", "\n", "(a) Is this relation reflexive? Yes\n", "For every integer $x$, $x + x = 2x$, therefore it is reflexive\n", "\n", "(b) Is this relation symmetric? Yes\n", "Let $x, y$ be a pair of integers in the relation and $z$ be the sum of these integers, so $x + y = 2z$\n", "Since addition is commutative, the position of $x$ and $y$ do not matter, so $(x,y) and $(y,x) are in the relation\n", "(Both $x + y$ and $y + x$ equal $2z$)\n", "\n", "(c) Is this relation transitive? Yes\n", "Let $(a,b)$ and $(b,c)$ be valid pairs of integers of the relation $R$\n", "$a + b = 2n$, and $b + c = 2p$, then $b = 2n - a$ and $b = 2p - c$\n", "$-2n + a = 2p - c$\n", "$a + c = 2p + 2n$\n", "Since the sum of a and c is the sum of two even numbers (numbers multiplied by 2 must be even), then the result must be even, so the result is divisible by 2\n", "$\\therefore$ The relationship is transitive" ], "metadata": { "collapsed": false }, "id": "5fe823d05dd08b12" }, { "cell_type": "markdown", "source": [ "
" ], "metadata": { "collapsed": false }, "id": "889a2a7359618ee7" }, { "cell_type": "markdown", "source": [ "# Question 14\n", "There are 7 equivalence classes as the results are grouped by the integer returned by $n_0(x) - n_1(x)$/$n_0(y) - n_1(y)$ for any relation pair, the results are that being set of differences $\\{-3, -2, -1, 0, 1, 2, 3\\}$" ], "metadata": { "collapsed": false }, "id": "fd69c73a15e8e6a0" }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{-3: [('111', '111')],\n", " -2: [('11', '11')],\n", " -1: [('1', '1'),\n", " ('1', '011'),\n", " ('1', '101'),\n", " ('1', '110'),\n", " ('011', '1'),\n", " ('011', '011'),\n", " ('011', '101'),\n", " ('011', '110'),\n", " ('101', '1'),\n", " ('101', '011'),\n", " ('101', '101'),\n", " ('101', '110'),\n", " ('110', '1'),\n", " ('110', '011'),\n", " ('110', '101'),\n", " ('110', '110')],\n", " 0: [('', ''),\n", " ('', '01'),\n", " ('', '10'),\n", " ('01', ''),\n", " ('01', '01'),\n", " ('01', '10'),\n", " ('10', ''),\n", " ('10', '01'),\n", " ('10', '10')],\n", " 1: [('0', '0'),\n", " ('0', '001'),\n", " ('0', '010'),\n", " ('0', '100'),\n", " ('001', '0'),\n", " ('001', '001'),\n", " ('001', '010'),\n", " ('001', '100'),\n", " ('010', '0'),\n", " ('010', '001'),\n", " ('010', '010'),\n", " ('010', '100'),\n", " ('100', '0'),\n", " ('100', '001'),\n", " ('100', '010'),\n", " ('100', '100')],\n", " 2: [('00', '00')],\n", " 3: [('000', '000')]}\n" ] } ], "source": [ "# Set of all strings containing 0 and 1 up to length 3\n", "def get_all_strings_with_a_given_alphabet_and_length(_alphabet, _length):\n", "\t_strings = ['']\n", "\tfor i in range(_length):\n", "\t\ts = [s + c for s in _strings for c in _alphabet]\n", "\t\t_strings += s\n", "\n", "\t# Remove duplicates (set() isn't as nice as it doesn't preserve order, at least for verification purposes)\n", "\t_strings = list(dict.fromkeys(_strings))\n", "\treturn _strings\n", "\n", "alphabet = ['0', '1']\n", "strings = get_all_strings_with_a_given_alphabet_and_length(alphabet, 3)\n", "\n", "# The relation is valid if the number of zeros from string x minus the number of ones from string x is equal to the number of zeros from string y minus the number of ones from string y\n", "def is_valid_relation(_x, _y):\n", "\t# Count the number of zeros and ones in each string\n", "\tx_zeros = _x.count('0')\n", "\tx_ones = _x.count('1')\n", "\ty_zeros = _y.count('0')\n", "\ty_ones = _y.count('1')\n", "\n", "\t# Return true if the difference between the number of zeros and ones is equal\n", "\treturn (x_zeros - x_ones) == (y_zeros - y_ones)\n", "\n", "from collections import defaultdict\n", "\n", "# Print all valid relations\n", "equivalence_classes = defaultdict(list)\n", "for x in strings:\n", "\tfor y in strings:\n", "\t\tif is_valid_relation(x, y):\n", "\t\t\t# create a tuple of the two strings\n", "\t\t\tt = (x, y)\n", "\t\t\t# calculate the difference between the number of zeros and ones\n", "\t\t\td = x.count('0') - x.count('1')\n", "\t\t\t# add the tuple a list under the key of the difference\n", "\t\t\tequivalence_classes[d].append(t)\n", "\t\t\t\t\n", "# Print the dict\n", "equivalence_classes = dict(equivalence_classes)\n", "from pprint import pprint\n", "pprint(equivalence_classes)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-01-26T22:03:01.411977200Z", "start_time": "2024-01-26T22:03:01.364977700Z" } }, "id": "94712ae197e8639c", "execution_count": 5 } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }