CS3413/Assignment5/hard_affinity.c

143 lines
4.7 KiB
C
Raw Normal View History

2023-10-27 10:42:23 -03:00
#include <stdio.h>
2023-10-27 11:24:40 -03:00
#include <pthread.h>
2023-10-27 10:42:23 -03:00
#include "lib/queue.h"
#define MAX_USERNAME_LENGTH 100
int QUANTUM;
2023-10-27 11:24:40 -03:00
int CPUS;
2023-10-27 10:42:23 -03:00
Queue *input_queue() {
Queue *queue = createQueue();
char username[MAX_USERNAME_LENGTH]; // username buffer
char job;
2023-10-27 11:24:40 -03:00
int arrival_time, duration, affinity;
2023-10-27 10:42:23 -03:00
scanf("%d", &QUANTUM);
while (getchar() != '\n'); // clear the newline from the buffer
2023-10-27 11:24:40 -03:00
scanf("%d", &CPUS);
while (getchar() != '\n'); // clear the newline from the buffer
while (getchar() != '\n'); // ignore the rest of the line, this is the table line
2023-10-27 10:42:23 -03:00
// Loop through the process table and enqueue each process
2023-10-27 11:24:40 -03:00
while (scanf("%99s %c %d %d %d", username, &job, &arrival_time, &duration, &affinity) != EOF) {
Process *process = createProcess(username, job, arrival_time, duration, affinity);
2023-10-27 10:42:23 -03:00
enqueue(queue, process);
}
return queue;
}
2023-10-27 11:24:40 -03:00
void* print(void *print_queue_void) {
// Cast the input queue to a Queue pointer
Queue *print_queue = (Queue*) print_queue_void;
// Print the Time label as well as the CPU labels
printf("Time");
for (int i = 0; i < CPUS; i++) {
printf("\tCPU%d", i);
}
printf("\n");
2023-10-27 10:42:23 -03:00
2023-10-27 11:24:40 -03:00
}
void* simulation(void *in_queue_void) {
// Cast the input queue to a Queue pointer
Queue *in_queue = (Queue*) in_queue_void;
// Summary creation
2023-10-27 10:42:23 -03:00
Process *process = in_queue->end;
Queue *summary_queue = createQueue();
for (int i = 0; i < in_queue->size; ++i) {
if (contains(summary_queue, process->username) == false) {
2023-10-27 11:24:40 -03:00
Process *copy = createProcess(process->username, process->job, process->arrival_time, process->duration, process->affinity);
2023-10-27 10:42:23 -03:00
enqueue(summary_queue, copy);
}
process = process->prev_elem;
}
// Loop variables
int quantum = QUANTUM;
int addedJobs = 0;
int time = 0;
// Create a queue for the simulation
Queue *sim_queue = createQueue();
printf("Time\tJob\n");
while (true) {
time++;
// Begin going through all jobs and enqueueing them if they have arrived
process = in_queue->end;
for (int i = 0; i < in_queue->size; i++) {
if (process->arrival_time == time) {
// Create copy to keep the queues separate
2023-10-27 11:24:40 -03:00
Process *copy = createProcess(process->username, process->job, process->arrival_time, process->duration, process->affinity);
2023-10-27 10:42:23 -03:00
enqueue(sim_queue, copy);
addedJobs++;
}
process = process->prev_elem;
}
// Begin printing the current job
process = sim_queue->end;
if (sim_queue->size == 0) { //If there is nothing in sim_queue, print "-"
printf("%d\t-\n", time);
if (addedJobs == in_queue->size) {
break; // If all jobs have been added, and the simulation queue is empty, then we are done
}
} else {
printf("%d\t%c\n", time, process->job); // Print the current job
process->duration--;
quantum--;
if (process->duration == 0) { // If the process is done, delete it
Process *temp = dequeue(sim_queue); // Store the process in a temp variable for deletion
search(summary_queue, temp->username)->finish_time = time; // Set the finish time for the summary queue
destroyProcess(temp); // This should be called on every process
quantum = QUANTUM; // Make sure to reset the quantum when a process is done
} else if (quantum == 0) { // If the quantum is 0, then we need to dequeue the process and enqueue it again
process = dequeue(sim_queue);
enqueue(sim_queue, process);
quantum = QUANTUM;
}
}
}
// Print the summary
printf("\nSummary\n");
printList(summary_queue);
// Free memory for the simulation queue. There should be nothing left in it
stop(sim_queue);
// We never dequeue from the summary queue, so we don't need to make sure about freeing dequeued processes
stop(summary_queue);
}
int main() {
Queue *in_queue = input_queue(); // Create the input queue
2023-10-27 11:24:40 -03:00
Queue *print_queue = createQueue(); // Create the print queue
// Create the print thread
pthread_t print_thread;
pthread_create(&print_thread, NULL, &print, print_queue);
// Create the simulation threads
pthread_t threads[CPUS];
for (int i = 0; i < CPUS; i++) {
pthread_create(&threads[i], NULL, &simulation, in_queue);
}
// This should make sure all threads are done simulating, as the print function exits after simulation is done
pthread_join(print_thread, NULL);
// Just to make sure all threads are done
for (int i = 0; i < CPUS; i++) {
pthread_join(threads[i], NULL);
}
2023-10-27 10:42:23 -03:00
stop(in_queue); // Free memory for input queue
return 0;
}