
Assignment 5

Georgiy Krylov

November 8, 2023

ASSIGNMENT IS TO BE COMPLETED INDI-
VIDUALLY BY ALL STUDENTS!

1 Description

This assignment is to develop a simulation of contiguous memory allocation.
The assignment is Due by 11:59 p.m. on Thursday, 16th of November
2023 (one minute before Friday).

2 Task

One of the simplest ways to allocating memory is to service the processes re-
questing memory with a chunk of contiguous memory of the requested size. In
this model of memory allocation, the chunks are reserved for the process re-
quested it until the process terminates [1]. Upon termination, the memory is
made available for allocation again. Initially the whole memory is available for
allocation. The task of this assignment is to implement three algorithms that
can be used for this:

1. First-fit : The first chunk of available memory that is big enough is used
to service the allocation request.

2. Worst-fit : The biggest chunk of available memory is used to service the
allocation request.

3. Best-fit : The smallest chunk of available memory that is big enough is
used to service the allocation request.

More details are available in Chapter 9.2.2 of the book [1], or in the slides
uploaded to D2L. At the very beginning of the algorithms’ operation, just one
hole of maximum available memory size exists. Throughout the operation of the
algorithms, before any process is terminated, you are to try allocating memory
from this hole. Suppose the first process terminates and the memory occupied
by this process is released. Now, you have two holes, and you need to decide
which one to use to service the next allocation request, based on the algorithm.

1



Do not forget that if any of two chunks are adjacent, they need to be merged
to become one bigger chunk. For example, you may have two chunks of free
memory: one with the addresses ranging between 0 and 20, and another one,
with the addresses ranging between 20 and 40. These two chunks should be
grouped together into a chunk with addresses ranging between 0 and 40, to be
able to service a bigger process.

Consider the following input format:

N 1 500

T 7

T 1

S

This file describes the process #1 being allocated (using N command), request-
ing 500 bytes. If your algorithm can service this request, the chunk of free
memory should be reduced by 500 bytes, and an entry in process table should
be created. Otherwise, an error message (like “Process # failed to allo-
cate x memory”) should be printed, but the program should keep executing
the requests. The program then attempts to terminate the process #7 (using T
command). As the process #7 was not created before, the program should print
an error message (like Process # failed to free memory, and keep executing
the requests. If the process was on the process table, the process should have
been terminated and resources should have been released.

The summary should be printed upon reading the S command. The sum-
mary contents are to reflect the total number of processes created, total allocated
memory, total number of processes terminated, total size of freed memory, final
memory available across all the chunks, final smallest and largest fragmented
memory chunks, the number of failed requests, and the number of free memory
chunks.

Your program to accept the maximum memory size specified as a command
line argument “-s#”, and the algorithm using “-f”, “-b”, “-w”. See the sample
starter code provided.

You are not allowed to implement a “hard-coded” solution for this assign-
ment (e.g. make assumptions about the size). For this assignment, if you submit
the code that passes all tests and contains no “hard-coded” parts, you will get
the full mark.

3 Input/Output format

See the provided test suite. If you place your .c files and .h files in the “code”
folder and type “make”, the code should be compiled. To test your code, you
can type “make all”, which will delete an executable called program1, delete
the contents of the .student out directory, and run all the tests. The indi-
vidual tests can be performed by typing “make 1”, “make 2”, .., up to “make
14”. Empty output from the diff program means the test has passed success-
fully. Sample input files are available in the .in directory, the expected output

2



is available in the .out directory, and your output will be generated to the
.student out directory.

4 Submission instructions

Please submit just your C and H files to D2L Assignment box. Make sure your
code compiles and runs. Make sure your code follows the specified input/output
format. You must use C programming language to solve this assignment. For
this assignment, your grade will be proportional to the percentage of the tests
passing successfully.

NOTE: THE INPUT AND OUTPUT OF YOUR
PROGRAM IS SPECIFIED SUCH THAT THE
MARKER CAN AUTO TEST YOUR SUBMIS-
SIONS. PLEASE FOLLOW THE SPECIFICA-
TIONS! USE THE MAKEFILE).

References

[1] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts, 10th Edition. Wiley, 2018.

3


