
Assignment 5

Georgiy Krylov

October 26, 2023

ASSIGNMENT IS TO BE COMPLETED INDI-
VIDUALLY BY ALL STUDENTS!

1 Description

This assignment is to learn more about synchronization problems, practice syn-
chronization mechanisms like semaphores and mutexes. The assignment is
Due by 11:59 p.m. on Thursday, 2nd of November 2022 (one minute
before Friday).

2 Task

In this assignment you’re to extend your simulation of the Round-Robin
scheduling algorithm with multiple threads. The threads are to simulate mul-
tiple CPUs having their own schedules. To assign a job to a CPU, you need to
use the processor affinity - a new field in a job’s description.

2.1 Requirements

First, your program should read the number of CPUs. Second, your program
should read the time quantum for each of the CPUs. After that, your program
should read the inputs, very similar to the previous assignment, except there’s a
new field: Affinity. This field is represented by an integer value and corresponds
to the ID of the (simulated) CPU, which should be executing the job. The jobs
with affinity 0 can only be executed by the CPU0, i.e., we are simulating hard
affinity.

Your program should have three kinds of threads:

� The main thread, which has several responsibilities:

– Reading the input

– Creating the CPU threads and a printing thread

– Printing the summary

1



� CPU thread(s) - threads that simulate one core of CPU each. You will
need to make your entire simulation from the previous assignment solution
to run as a separate thread, using pthread_create(). The number of the
threads should correspond to the number of the CPU cores, which is a
user input. Each of the CPUs can have a local running queue, but should
compete for access to the “input queue” with another CPUs. Every unit
of time within the simulation, the CPUs should send the jobs they were
executing to a buffer shared with the printing thread.

� Finally, your program should have a printing thread, also created using
pthread_create. The thread will be executing a function that is responsible
for printing the time and jobs currently performed by each CPU. This
function should wait for all CPU threads to finish simulating one unit of
execution, and print the contents of the shared buffer, populated by the
CPUs. After that, the printing thread should signal the CPU threads
that they can resume their simulations. Importantly, this thread should
be created before the CPU threads.

Finally, a summary should be printed following the same rules as in the
previous assignment.

2.2 Limitations

For this exercise, you are prohibited from allocating a 2d array that would store
history of CPU states at any unit of time. The buffer should be only big enough
to hold one character per CPU. You are to use semaphores and mutexes, not
pipes. Solutions using busy wait loops will be lightly penalized for each busy
wait loop. Solutions using sleep for synchronization will lightly be penalized for
each sleep statement in the code.

2.3 Working solution for the previous assignment

If you did not manage to finish the previous assignment or your design choices
make the change too difficult, instructor’s solution to the previous assignment
will be posted on Sunday morning, under Course Content/Misc. useful stuff. If
you plan to start working on the homework earlier than that, please feel free to
send instructor an email requesting the solution earlier.

3 Input/Output format

See the attached sample input1.txt and sample output1.txt for clarifications.

4 Submission instructions

Please submit your C file to D2L Assignment box. Make sure your code compiles
and runs. Make sure your code follows the specified input/output format. You

2



must use C programming language to solve this assignment. Important to note
in this course: if your program produces correct output, it doesn’t necessarily
mean you have properly managed the resources and penalties are possible. This
assignment focuses on synchronization, threads management and communica-
tion, and therefore the TA will be asked to make sure the threads are properly
created and terminated,semaphores and mutexes are properly allocated and
deallocated, critical sections of the code are properly synchronized.

NOTE: THE INPUT AND OUTPUT OF YOUR
PROGRAM IS SPECIFIED SUCH THAT THE
MARKER CAN AUTO TEST YOUR SUBMIS-
SIONS. PLEASE FOLLOW THE SPECIFICA-
TIONS! INPUTWILL BE READVIA stdin (E.G.
KEYBOARD). OUTPUT SHOULD BE PRINTED
TO stdout (E.G. MONITOR).

3


