
Fall 2023

CS3413

Lab1

Bash scripting

Due Tuesday 12 Sep 7:50 PM Fredericton time.

Mac users, you’re likely to use CMD instead CTRL throughout the lab if you are working on your own

device.

This lab is to introduce the class to Linux CLI and Terminal.

Your task is to find out about the commands that can help you create files and directories, navigate

directories, check various statistics of the lab equipment, and submit the script you created in process,

as well as your activities log. All the activities are to be executed using command line terminal (once you

launch it your way). Please login into the lab machine your preferred way. Open the terminal program.

Remote access instructions (extract from Course Overview on D2L)

To complete this course students will need to have access to a Linux machine running a standard C

programming development environment including: text editor, compiler and pthreads library. Students

can access the UNB FCS labs via vpn/vnc or they can run an FCS linux image via virtualbox.

• For instructions on remotely connecting to FCS’s labs, you can find directions here:

o GUI access (https://www.cs.unb.ca/help/remote-lab-gui-access.shtml)

o Command line access (https://www.cs.unb.ca/help/ssh-help.shtml)

BEFORE STARTING WORKING ON THIS LAB

Read about the ‘history’ Linux command. Once you log in, please type `history` to observe the history of

commands you’ve previously executed.

For this assignment, you will be asked to submit the output of your history command as well as the

script you’ve created. To avoid the TA’s or instructors to learn something you don’t want to share,

please delete your previous history (don’t forget to back it up if you need it (see submission instructions

to learn how to back up the history)

You should execute `history -c` before starting to work on this lab.

Please work within the same terminal window.

First and foremost:

Google can be helpful in figuring out the commands you need to use, for sure. However, if you find

yourself in the situation when you’re not allowed to use internet, you can use Linux manuals to

investigate the command. You are allowed to use internet for this lab. Also please ask your TA or

instructor for help.

Working on this lab:

Make sure you typed history -c before starting to work on this lab

https://www.cs.unb.ca/help/remote-lab-gui-access.shtml
https://www.cs.unb.ca/help/ssh-help.shtml

Use ls to examine the contents of the folder you’re in.

Use pwd to identify the current working directory.

Use mkdir “Lab 1” to create a directory called “Lab 1”. Note you will need to either escape the space,

like Lab\ 1 or use quotes.

Type cd “Lab 1” to change your directory to Lab 1.

Confirm the current directory has changed using one of the previous commands.

Notice that the “Lab 1” name is lame because it makes you use quotes.

Type cd .. to go one directory higher.

Confirm the current directory has changed using one of the previous commands.

Confirm the annoying “Lab 1” folder is still there by using one of the previous commands.

Delete the folder using rm “Lab 1”

Learn that “Lab 1” is a directory and shell won’t delete it for you. Use rm -r “Lab 1“ to delete the

directory with a space in its name

Create a new directory “lab1”.

Realize your instructor asked you to create a folder with a lowercase “l” letter in its name to make you

practice renaming files and directories. Type mv lab1 Lab1 to rename the folder.

Confirm the folder was renamed and start typing cd D and press Tab on your keyboard multiple times to

learn there’s an autocomplete and you don’t always need to type all names yourself.

Notice that cd D and hitting Tab has nothing to do with your Lab1 folder, press ctrl+c combination to

cancel the current command.

Start typing cd La , hit Tab and enter Lab1 directory.

Verify you’re where you’re supposed to be.

Create a file test.c by using touch test.c command

If you’re familiar with how to use emacs or vi or vim properly, your instructor applauds you and invites

you to use the shortcuts that you’re comfortable with. For the rest of the class

Type nano test.c and observe text editor. Think about how great it is to have a GUI text editors. Notice

Nano provides you with hints about its interface.

The lab continues on the next page!

Select the following lines and copy them by using ctrl+insert

#include<stdio.h>

int main(int argc, char** argv){

char temp[100];

gets(temp);

printf("%s\n",temp);

return 0;

}

If you are using the GUI access to the lab pc, use the clipboard to insert the text there when you are

transferring the data. After that, copy the code from within the VM.

Shift+insert the lines into your nano editor.

Press F2 (or ctrl+x) combo to start writing to the file.

Answer Y to the prompt.

Now, type gcc -Wall -Werror test.c

Notice how compiler does not let you to proceed with using deprecated function, that’s due to -Wall

(show all warnings) and -Werror (treat all warnings as errors).

Replace the problematic line with scanf.

Recompile your program.

The echo command allows to print output to screen. The > token allows redirecting the output of your

command to a text file. Try it by typing echo Hello world > input.txt

Notice that single > token will create input.txt whereas >> will append to existing contents.

Try it by typing echo Hello planet >> input.txt

Verify the contents of the file by using cat input.txt

Now type echo Hello > correct_output.txt

Please, also type echo Hello world > incorrect_output.txt

The < token allows redirecting contents of a file to serve as a standard input. We’ve covered that in class

a little, but now your instructor wants you to try it yourselves. Please do that by typing ./a.out <

input.txt

Notice that you have your output on the screen. Now, you can combine the tokens together! Try ./a.out

< input.txt > output.txt

Verify the contents of the file by using cat command.

Now you want to verify if the correct output matches exactly the output your program produced. Type

diff correct_output.txt output.txt

If nothing is displayed on your screen – that’s exactly what diff generates if the files are identical. Try

verifying how diff works if the files differ: press up arrow for your diff correct_output.txt output.txt to

appear on the screen. Modify this command to look like diff correct_output.txt incorrect and observe

the outputs. You can do that by using backspace or delete and arrow keys for navigation. Note how diff

does not care about the file extensions matching.

Pipe symbol | allows connecting output of one program to input of the second program.

tail -n # program allows you to list the number # of lines from reading a file. Try calling the history

command and limiting its output to only include 20 last lines. Try redirecting the results into a file called

script.sh using > token

Assuming that you have created script.sh file, you need to edit the file only to contain the lines related

to

1. compiling your file

2. running the program with input/output redirection

3. comparing the output and correct output.
 If your file does not have the related lines, you can call history | tail to output more lines. Please

remove the line numbers and time stamps, leaving just the commands. Save the file and exit the nano

program.

Create a file called tmp.txt using the nano program. To do that, type nano tmp.txt

Modify the file contents, so that

#!/bin/bash

is the first and only line in the file. This line, if placed into a .sh file allows making sure that BASH

interpreter is used (there several possible shells like ksh, zsh and other).

cat command was originally designed to concatenate files, not just observe the file contents. Try

merging contents of tmp.txt and script.sh Try doing that by cat tmp.txt script.sh and redirecting the

output into a file that is called compile_script.sh

Try executing your file by calling ./compile_script.sh . Notice that your shell says that permission is

denied.

Try changing the fille permissions to make it executable. Try adding (+) permissions to execute this file

by typing chmod +x compile_script.sh .

Try executing the file again. Your script should compile, run, and compare the output of a c program.

Notice you now have a script like how your instructor and TAs will be grading your program. Feel free to

verify your programs before submitting them to D2L.

Please proceed to submit your program.

Submission instructions:

Type

history > history_backup.txt

This set of commands can be used to back up your history of commands;

cat history_backup.txt compile_script.sh > to_submit.txt

Please check if your to_submit.txt contains history of your previous commands and clean unrelated

commands before submitting.

Please submit the to_submit.txt file.

