
Assignment 1

Georgiy Krylov

September 12, 2023

ASSIGNMENT IS TO BE COMPLETED INDI-
VIDUALLY BY ALL STUDENTS!

1 Description

This assignment is to start the class working on the data structures that later
can be used throughout the course, as well as to freshen up C programming
skills and practice memory allocation using malloc(...) and deallocation, using
free(...), as well as memcpy(...) and sizeof(...) routines. Having a good
memory management skills is important for the practical part of this course.

The assignment is Due by 11:59 p.m. on Wednesday, 20th of September
2023.

1.1 Task

Your task is as follows:
Implement ONE data structure of your choice from slide 1.58 (linked list,

doubly linked list, circular linked list) and use it to support the memory man-
agement commands described below.

An example of the data structure that can be used for implementing the
linked list:

typedef struct _node{

struct _node* next_elem;

char* data; // For the future assignments you might

need to use more elements / elements of different

type.

} Node;

For this assignment, the data will consist of short arbitrary-sized sequences of
characters, no longer than a hundred elements each. (This clarification can be
used to simplify the reading process, not while storing the data in the node. In
other words, you are not allowed to use char[100] in the Node declaration, but
you are allowed to use such variable as a buffer in the scanf function).

Using this data structure (or a slightly altered version for doubly-linked list),
please implement the following functionality:

1

� void add(Node**, char*) - adds an element specified by the second pa-
rameter (char*) to the end of the list pointed to by the first parameter
Node**. No need to worry about eliminating duplicates.

� void delete(Node**, char*) removes the first occurrence of the element
specified by the second parameter (char*) from the list pointed to by the
first parameter Node**. In the case there’s no element with such data in
the list, the list should remain unchanged.

� int contains(Node*, char*) - a query that returns 0 or 1, if the element
specified by the second parameter (char*)is in a linked list or not, 0 being
element is not in the linked list pointed to by the first parameter Node*.
This command cannot be invoked by the user, but can be used by other
commands.

� void findAndReplace(Node*, char*, char*) - looks up for the first occur-
rence of an element specified by the second parameter char* and replaces
it with the value specified by the third parameter char* in the list pointed
to by the first parameter Node*. In the case the character sequence spec-
ified by the second parameter is not presented in the list, this function
should not modify the list.

� void printList(Node*) - a function that iterates through all elements in
the list pointed to by the first parameter Node*, printing each string to the
console.

� int stop(Node**) - a function that frees all resources from your linked list
pointed to by the first parameter Node**, and stops reading the input. You
may use the return value to terminate the while loop.

For this assignment, your program should create one empty list at the very
beginning and later use it to perform all operations on it. In other words:

Node* head = NULL;

After that, your program should read the actions that it should take from con-
sole. The actions are encoded by the first letters of the corresponding function
name e.g., a for add, f for findAndReplace, etc.

Your program should properly free all the memory allocated for the linked
list elements before termination. I.e., no memory leaks are allowed. To refresh
your knowledge, a memory leak happens when you have allocated a memory to
a pointer, then changed the address the pointer is pointing to, or allocated new
memory chunk using malloc(...), but did not release the resources used by
previous allocation, i.e., did not free(...) the memory.

The tests to your program will not be purposefully faulty (no tricks will be
played). Moreover, the tests are guaranteed to run to completion in a working
program.

2

2 Input/Output format

If your program is presented with the following input:

a hello

a hi

a hi

p

s

The expected output is:

hello

hi

hi

Second example:

a hello

a hi

a hey

p

f hey yes

p

d hi

p

f hi maybe

p

s

Should produce the following output

hello

hi

hey

hello

hi

yes

hello

yes

hello

yes

3 Submission instructions

Please submit your C file to D2L Assignment box. Make sure your code compiles
and runs. Make sure your code follows the specified input/output format. You
must use C programming language to solve this assignment. Important to note
in this course: if your program produces correct output, it doesn’t necessarily
mean you have properly managed the resources and penalties are possible. This
assignment focuses on memory management, and therefore the TA will be asked

3

to make sure the memory is properly deallocated. Those who are interested in
automated memory verification tool may look up valgrind tool, that is part of
UNB FCS Linux lab machines installation.

NOTE: THE INPUT AND OUTPUT OF YOUR
PROGRAM IS SPECIFIED SUCH THAT THE
MARKER CAN AUTO TEST YOUR SUBMIS-
SIONS. PLEASE FOLLOW THE SPECIFICA-
TIONS! INPUTWILL BE READVIA stdin (E.G.,
KEYBOARD). OUTPUT SHOULD BE PRINTED
TO stdout (E.G., MONITOR).

4

