
Assignment 1

Georgiy Krylov

September 21, 2023

ASSIGNMENT IS TO BE COMPLETED INDI-
VIDUALLY BY ALL STUDENTS!

There was an announcement from our IT depart-
ment the last time we did this exercise, that while
working on CS3413 assignment #2, it is possi-
ble to create too many processes using forks. As
per the email, this “makes the computer com-
pletely unusable to anyone and causes problems
for other students.” Therefore, while working on
the processtree command, use the input no big-
ger than five when testing.

Additionally, to avoid that, make sure you set the limits for the maximum
number of processes you can create before running your program. Please follow
these steps to limit the number of processes:

1. Identify the number of processes currently running on your machine by
typing “ps -aux — wc -l”.

2. Add 50 to the number you have seen and remember it - this will be a new
limit for the maximum number of running processes.

3. If you are connected to a lab machine remotely, start by typing “limit”
command.

� If you see an output other than “command not found” - type “limit
maxproc 450”, where instead of 450 should be the number you re-
membered from before.

1

� Otherwise, you are likely using Bash interpreter. Use “ulimit -S -u
25”, where instead of 450 should be the number you remembered
from before.

This will limit the number process you can create. If you are seeing a message
along the lines “no more processes” or “fork retry” - you have reached the
specified limit. Please close the terminal program, and repeat the procedure
of setting the limits again, every time you open a new terminal window. Also,
please make sure you are terminating the processes properly. It will help you
debug your program and keep you from locking up and getting kicked out of the
computer. You will need to run this every time in each new command window.

1 Description

This assignment is for the class to have hands-on experience with creating pro-
cess, understanding the principles of process trees and parent-child relation-
ships between processes. Additionally, this assignment allows practicing the
inter-process communication.

The assignment is Due at 11:59 p.m., Friday the 29th of September
2023. (1 minute before Saturday).

2 Task

To complete this assignment, you have to write a C program that would serve as
an “enhanced” terminal. It has several components that should be approached
in step by step fashion to simplify the learning process. The items your program
should be able to do:

First of all, your program should terminate when it reads the stop command.
The terminal otherwise expects a command in an infinite loop, prompting the
user for input. All prompts should contain a process ID of the processes that
issue it. You are not allowed to use a variable to store the PID when printing
a prompt. The infinite loop might be configured to only run if a value of a
certain variable is set to 1. This value would never change in a parent, but in
children it might change. Alternatively, your program can call exit() explicitly
in every child process. To avoid “zombie” processes, please make sure to call the
wait() command in every process. Note that the wait() command is waiting
for termination of just one child process, you may need to call it in a loop.

Upon reading the onechild command, your shell should spawn a child pro-
cess and report parent and child process IDS. Hint: fork() and getpid() can
be used for that.

Upon receiving the addnumbers command, your program should be able
to sum the numbers from consecutive input, until a zero is typed in. This should
be done by setting up two pipes and forking a process. Later, the parent process
should receive the inputs from the user and sending them to the child process.
The child process should be reading from the pipe until a zero is encountered,

2

storing the sum into a temporary variable. After a zero is read, the child process
should send the total sum to the parent process. The parent process should print
the result.

Upon reading the exec input into the command line, your program should
read arguments until the “;” literal is encountered. After that, the command
should be executed. To do this, your process should read the commands into
an array of char* (i.e. char**) (up to five arguments). Further, your process
should call the fork syscall. The parent should wait(NULL) for the child pro-
cess, which in turn should execute the command using either of the execvp(),
exec(), execl(), and execlp() commands. The child process does NOT have
to print its PID when using one of the exec() calls. Note, make sure you ini-
tialize your buffer strings to NULL explicitly as well as allocate and de-allocate
memory for them appropriately.

The final item is to extend your code from the subtask number two, such that
upon entering the processtree command, followed by an integer, all numbers
from 0 to 2integer−1 are printed. You should use a for loop for spawning the
processes, and can use the loop variable for identifying the output. Hint: I used
powers of 2 and loop that decrements the iterator. The order of output does
not matter. Just for this part, it is fine for the child processes to print after
the prompt for the next command is issued. (Please use the maximum of 5 for
testing, before you are certain that your processes terminate correctly) Creating
other than 2integer−1 processes will result in a penalty.

Hint: Chapter 3 actually provides a lot of code that can be reused. Another
hint: To display all the buffered output, you can use fflush(stdout).

3 Input/Output format

For this assignment, you don’t have to make sure that input/output redirection
works. Please refer to sample execution.txt and sample execution 2.txt.

4 Submission instructions

Please submit your C file to D2L Assignment box. Make sure your code compiles
and runs. Make sure your code follows the specified input/output format. You
must use C programming language to solve this assignment. Important to note
in this course: if your program produces correct output, it doesn’t necessarily
mean you have properly managed the resources and penalties are possible. This
assignment focuses on process management and communication, and therefore
the TA will be asked to make sure the processes are properly created and ter-
minated (emphasis on not having zombie processes).

3

NOTE: THE INPUT AND OUTPUT OF YOUR
PROGRAM IS SPECIFIED SUCH THAT THE
MARKER CAN AUTO TEST YOUR SUBMIS-
SIONS. PLEASE FOLLOW THE SPECIFICA-
TIONS! INPUTWILL BE READVIA stdin (E.G.
KEYBOARD). OUTPUT SHOULD BE PRIN-
TED TO stdout (E.G. MONITOR).

4

