
Assignment 4

Georgiy Krylov

October 13, 2023

ASSIGNMENT IS TO BE COMPLETED INDI-
VIDUALLY BY ALL STUDENTS!

1 Description

This assignment is to practice scheduling algorithms on example of the Round
Robin algorithm. The assignment is Due by 11:59 p.m. (midnight) on
Thursday, 26th of October 2022.

2 Task

In this assignment you’re to implement a simulation of Round Robin schedul-
ing algorithm. It is a preemptive algorithm that makes scheduling decisions
when a time quantum allotted for the current job expires, or the CPU is fin-
ished execution of the current job. The next job to be scheduled is selected from
the list of already known jobs following the Round Robin algorithm. The first
line of input will be the time quantum. In the case when two jobs have been
added to the ready queue at the same time, th order of input is the tiebreaker.
CPU time is an integer that starts from one and is used for scheduling as well
as for output.

Your program to read the jobs : username, job ID, arrival time and duration.

• Username is a sequence of characters not longer than 100 symbols.

• Job IDs are unique capital characters of English alphabet.

• Duration is a positive nonzero integer.

The jobs should be read before starting any simulation (hint: the main thread
can do that). Your program should print a schedule corresponding to the job
name the CPU was executing during each time unit (see in Section 5), starting
from one.

1



3 Algorithm

1. Every unit of time, see if the CPU time matches a job’s arrival time, to
add the jobs to the scheduling queue from the queue containing the inputs.

2. Every unit of time, your CPU should check if the current job was just
finished (remaining time is zero)

(a) If that is the case

i. The summary should be updated.

ii. The job from the queue should be scheduled next.

(b) If that is not the case, your CPU should check if the quantum of time
has expired.

i. The job from the queue head should be scheduled next (in the
FIFO order).

3. If there are no jobs currently on CPU.

(a) The CPU should print current time and “-”

4. Otherwise (if there are jobs on the CPU)

(a) The CPU should print the current time, and the job that is currently
assigned on CPU.

(b) The CPU should decrease the current job’s remaining time.

5. The CPU should increase its current time and go to Step 1 again, until
all jobs are finished (queue is empty).

In the end, the program should output a per-user summary. The summary
should contain information about all users and when the last job submitted by
this user was finished. Remember, you cannot schedule jobs that did not arrive
yet for execution. Remember, if a job finishes before the allotted quantum
expires, the next job gets a full quantum. In summary, users should be sorted
by the order of their arrival.

4 Design Suggestions

This assignment simulates behavior of one processor, so it is not threaded.
The next one will be focused on multiple processors, so it will be using multiple
threads simulating CPUs, potentially with jobs migration and processor affinity.
To make it easier to get ready for the next assignment, consider using your linked
lists from Assignment 1 for solving this assignment. Hints:

• To turn a linked list into a queue, you can implement an enqueue method
that add elements to the very end of the linked list.

2



• You can use your contains function to avoid creating duplicate usernames
in your summary queue (I’d advise using three queues, one to store the in-
put, one for making scheduling decisions, and the third one for summary).

• You can remove the job from the ready queue and enqueue it again to
simulate FCFS order.

• In the input, the jobs are always sorted in the order of their arrival.

5 Input/Output format

Once again, in the input, the jobs are always sorted in the order of their arrival.
See the attached files for I/O specification.

6 Submission instructions

Please submit your C file to D2L Assignment box. Make sure your code compiles
and runs. Make sure your code follows the specified input/output format. You
must use C programming language to solve this assignment. Important to note
in this course: if your program produces correct output, it doesn’t necessarily
mean you have properly managed the resources and penalties are possible. This
assignment focuses on threads management and communication, and therefore
the TA will be asked to make sure the threads are properly created and termi-
nated.

NOTE: THE INPUT AND OUTPUT OF YOUR
PROGRAM IS SPECIFIED SUCH THAT THE
MARKER CAN AUTO TEST YOUR SUBMIS-
SIONS. PLEASE FOLLOW THE SPECIFICA-
TIONS! INPUTWILL BE READVIA stdin (E.G.
KEYBOARD). OUTPUT SHOULD BE PRINTED
TO stdout (E.G. MONITOR).

3


