CS4613/A1/infix-ae.rkt

56 lines
1.5 KiB
Racket

#lang plait
#| BNF for the AE language:
ae: NUMBER
| { ae + ae }
| { ae - ae }
| { ae * ae }
| { ae / ae }
|#
;; AE abstract syntax trees
(define-type AE
[Num (val : Number)]
[Add (l : AE) (r : AE)]
[Sub (l : AE) (r : AE)]
[Mul (l : AE) (r : AE)]
[Div (l : AE) (r : AE)])
;; to convert s-expressions into AEs
(define (parse-sx sx)
(let ([rec (lambda (fn sx)
(parse-sx (fn (s-exp->list sx))))])
(cond
[(s-exp-match? `NUMBER sx)
(Num (s-exp->number sx))]
[(s-exp-match? `(ANY + ANY) sx)
(Add (rec first sx) (rec third sx))]
[(s-exp-match? `(ANY - ANY) sx)
(Sub (rec first sx) (rec third sx))]
[(s-exp-match? `(ANY * ANY) sx)
(Mul (rec first sx) (rec third sx))]
[(s-exp-match? `(ANY / ANY) sx)
(Div (rec first sx) (rec third sx))]
[else (error 'parse-sx (to-string sx))])))
;; consumes an AE and computes the corresponding number
(define (eval expr)
(type-case AE expr
[(Num n) n]
[(Add l r) (+ (eval l) (eval r))]
[(Sub l r) (- (eval l) (eval r))]
[(Mul l r) (* (eval l) (eval r))]
[(Div l r) (/ (eval l) (eval r))]))
;; evaluate an AE program contained in an s-expr
(define (run sx)
(eval (parse-sx sx)))
(test (run `3) 3)
(test (run `{3 + 4}) 7)
(test (run `{{3 - 4} + 7}) 6)
(test (run `{8 * 9}) 72)
(test (run `{8 / 2}) 4)
(test (run `{-8 / 0}) -inf.0)
(test (run `{8 / {5 - 5}}) +inf.0)
(test (run `{1 / {1 / 0}}) 0.0)