
A NUMA architecture is one that has multiple nodes, each with their own local memory/cache. This
speeds up access time by not having each core of a CPU locked on memory accesses that other cores
might be accessing, memory latency, and memory consistency. NUMA nodes still may have to access
external memory, which is usually handled by its own hardware, which ensures memory accesses stay
consistent, with a speed penalty. According to some benchmarks, the speedup from local memory
accesses is up to 33%, with bandwidth following the same trend.

https://www.kernel.org/doc/html/v6.9/mm/numa.html
https://learn.microsoft.com/en-us/windows/win32/procthread/numa-support
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://blog.e-zest.com/non-uniform-memory-architecture-numa/
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/
bcm957xxx/adapters/Tuning/tcp-performance-tuning/nic-tuning_22/numa-local-vs-non-local.html
https://stackoverflow.com/a/7262135

https://stackoverflow.com/a/7262135
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Tuning/tcp-performance-tuning/nic-tuning_22/numa-local-vs-non-local.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Tuning/tcp-performance-tuning/nic-tuning_22/numa-local-vs-non-local.html
https://blog.e-zest.com/non-uniform-memory-architecture-numa/
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://learn.microsoft.com/en-us/windows/win32/procthread/numa-support
https://www.kernel.org/doc/html/v6.9/mm/numa.html

Compilers can affect parallel execution in regards to optimizing sequential code, specifically in regards
to out of order optimizations it may apply, such as changing the order in which variables are initialized
and memory allocated, which may be transparent to a sequential program but could lead out of of
bounds memory accesses in parallel scenarios. There can also be positive effects on performance,
specifically in cases where the compiler can determine data dependencies and can block of code to auto
parallelize code, or in cases where the compiler can detect a use case for AVX instructions (SIMD).

A scenario in which parallelization affects the output of a program in unexpected ways is when you
have data dependencies that are ran in parallel without consideration for each read and write, for
example:

let a = 1
mutate_on_thread_1(a)
mutate_on_thread_2(a)
print(a)

There is no way to know what a will be, since a is getting mutated at the same time.

https://www.intel.com/content/www/us/en/developer/articles/technical/automatic-parallelization-with-
intel-compilers.html
https://softwareengineering.stackexchange.com/a/421686
https://old.reddit.com/r/compsci/comments/dh2nld/whats_to_stop_or_limit_compilers_from/f3htpn4/

https://old.reddit.com/r/compsci/comments/dh2nld/whats_to_stop_or_limit_compilers_from/f3htpn4/
https://softwareengineering.stackexchange.com/a/421686
https://www.intel.com/content/www/us/en/developer/articles/technical/automatic-parallelization-with-intel-compilers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/automatic-parallelization-with-intel-compilers.html

The difference between shared memory parallelism and distributed parallel computation is that threads
operate on a shared memory space, taking consideration of acceses, using primitives like mutexs and
semaphores, where distributed parallel computation takes place on computers with their own memory
and no parallel execution, with commands dispatched to them. These models can be combined, with
dispatched commands to shared memory machines.

https://lms.unb.ca/d2l/le/content/257020/viewContent/2935160/View?ou=257020

https://lms.unb.ca/d2l/le/content/257020/viewContent/2935160/View?ou=257020

This function the most simple manual way of doing matrix multiplication without builtins
It does not take into account multithreading or any acceleration
It does however use the least amount of memory, only allocating new memory for the sum and the
results matrix
function for_loop(a, b)
 n = size(a, 1)
 m = size(b, 1)
 if (size(a, 2) != m)
 println("Matrixes not of multipliable sizes")
 end
 p = size(b, 2)

 c = Matrix{Int}(undef, n, p)

 for i in 1:n
 for j in 1:p
 sum = 0
 for k in 1:m
 a1 = a[i, k]
 b1 = b[k, j]
 sum = sum + (a1 * b1)
 end
 c[i, j] = sum
 end
 end
 c
end

This function is very easy as a programmer to use, as it is builtin and uses OpenBLAS, which has
more advanced algorithms for doing matrix multiplication
However, it fails under a few scenarios, where you are memory bound doing a lot of multiplications
on low dimension matrixes
as it uses much more memory even for a simple 5x5 matrix than the for loop, presumably due to
allocation costs and setup/error checking
function built_in(a, b)
 a * b
end

In terms of speed, the for loop loses in pretty much every scenario, but wins initially in terms of
memory usage, but as the
matrixes begin to scale dimensions into hundreds or thousands, the builtin becomes much closer in
terms of memory usage
function main()
 matrix_regex = r"(\d+)x(\d+)"

 println("Format is {num}x{num}. Eg: 3x3 or 100x100")

 print("Dimension of first matrix: ")
 input = readline()

 matrix_match = match(matrix_regex, input)
 matrix_1 = rand(Int, (parse(Int, matrix_match[1]), parse(Int, matrix_match[2])))

 print("Dimension of second matrix: ")
 input = readline()
 matrix_match = match(matrix_regex, input)
 matrix_2 = rand(Int, (parse(Int, matrix_match[1]), parse(Int, matrix_match[2])))

 println("For loop")
 @time for_loop(matrix_1, matrix_2)

 println("Builtin")
 @time built_in(matrix_1, matrix_2)
end

main()

