2024-01-29 09:56:47 -04:00
|
|
|
Lecture Topic: Binomial Distribution
|
|
|
|
|
|
|
|
# Requirements of Binomial Experiments
|
|
|
|
- (n) independent trials
|
|
|
|
- Possible outcomes: success (S) and failure (F)
|
|
|
|
- Success probability (p)
|
|
|
|
|
|
|
|
## Formula
|
|
|
|
The pmf of binomial rv $X$ depends on two parameters $n$ and $p$. We denote the pmf by $b(x; n,p)$
|
|
|
|
$$b(x;n,p) = \{
|
|
|
|
\begin{pmatrix}
|
|
|
|
n \\
|
|
|
|
p \\
|
|
|
|
\end{pmatrix}
|
|
|
|
p^x(1-p)^{n-x}
|
|
|
|
\}$$
|
|
|
|
$x = 0, 1, 2, ..., n$
|
|
|
|
|
|
|
|
If X ~ b(x; n,p), then
|
|
|
|
1. E(X) = np
|
|
|
|
2. V(X) = np(1-p)
|
|
|
|
|
2024-01-29 10:27:36 -04:00
|
|
|
# Examples
|
|
|
|
Examples in posted pdf
|