2024-01-26 13:20:09
This commit is contained in:
		
							
								
								
									
										12
									
								
								.obsidian/workspace.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								.obsidian/workspace.json
									
									
									
									
										vendored
									
									
								
							| @@ -13,7 +13,7 @@ | |||||||
|             "state": { |             "state": { | ||||||
|               "type": "markdown", |               "type": "markdown", | ||||||
|               "state": { |               "state": { | ||||||
|                 "file": "UNB/Year 4/Semester 2/CS3873/2024-01-26.md", |                 "file": "UNB/Year 4/Semester 2/CS2333/2024-01-26.md", | ||||||
|                 "mode": "source", |                 "mode": "source", | ||||||
|                 "source": false |                 "source": false | ||||||
|               } |               } | ||||||
| @@ -85,7 +85,7 @@ | |||||||
|             "state": { |             "state": { | ||||||
|               "type": "backlink", |               "type": "backlink", | ||||||
|               "state": { |               "state": { | ||||||
|                 "file": "UNB/Year 4/Semester 2/CS3873/2024-01-26.md", |                 "file": "UNB/Year 4/Semester 2/CS2333/2024-01-26.md", | ||||||
|                 "collapseAll": false, |                 "collapseAll": false, | ||||||
|                 "extraContext": false, |                 "extraContext": false, | ||||||
|                 "sortOrder": "alphabetical", |                 "sortOrder": "alphabetical", | ||||||
| @@ -102,7 +102,7 @@ | |||||||
|             "state": { |             "state": { | ||||||
|               "type": "outgoing-link", |               "type": "outgoing-link", | ||||||
|               "state": { |               "state": { | ||||||
|                 "file": "UNB/Year 4/Semester 2/CS3873/2024-01-26.md", |                 "file": "UNB/Year 4/Semester 2/CS2333/2024-01-26.md", | ||||||
|                 "linksCollapsed": false, |                 "linksCollapsed": false, | ||||||
|                 "unlinkedCollapsed": true |                 "unlinkedCollapsed": true | ||||||
|               } |               } | ||||||
| @@ -125,7 +125,7 @@ | |||||||
|             "state": { |             "state": { | ||||||
|               "type": "outline", |               "type": "outline", | ||||||
|               "state": { |               "state": { | ||||||
|                 "file": "UNB/Year 4/Semester 2/CS3873/2024-01-26.md" |                 "file": "UNB/Year 4/Semester 2/CS2333/2024-01-26.md" | ||||||
|               } |               } | ||||||
|             } |             } | ||||||
|           }, |           }, | ||||||
| @@ -158,8 +158,9 @@ | |||||||
|   }, |   }, | ||||||
|   "active": "64b233ae6a058454", |   "active": "64b233ae6a058454", | ||||||
|   "lastOpenFiles": [ |   "lastOpenFiles": [ | ||||||
|     "UNB/Year 4/Semester 2/STAT2593/2024-01-26.md", |  | ||||||
|     "UNB/Year 4/Semester 2/CS3873/2024-01-26.md", |     "UNB/Year 4/Semester 2/CS3873/2024-01-26.md", | ||||||
|  |     "UNB/Year 4/Semester 2/CS2333/2024-01-26.md", | ||||||
|  |     "UNB/Year 4/Semester 2/STAT2593/2024-01-26.md", | ||||||
|     "UNB/Year 4/Semester 2/CS2333/2024-01-22.md", |     "UNB/Year 4/Semester 2/CS2333/2024-01-22.md", | ||||||
|     "UNB/Year 4/Semester 2/CS2333/2024-01-24.md", |     "UNB/Year 4/Semester 2/CS2333/2024-01-24.md", | ||||||
|     "UNB/Year 4/Semester 2/CS3873/2024-01-24.md", |     "UNB/Year 4/Semester 2/CS3873/2024-01-24.md", | ||||||
| @@ -190,7 +191,6 @@ | |||||||
|     "Semester 2/CS3873", |     "Semester 2/CS3873", | ||||||
|     "Semester 1/CS3418/11-27-2023.md", |     "Semester 1/CS3418/11-27-2023.md", | ||||||
|     "Semester 1/CS3418/11-24-2023.md", |     "Semester 1/CS3418/11-24-2023.md", | ||||||
|     "Semester 1/CS3418/11-15-2023.md", |  | ||||||
|     "Semester 1/CS2418", |     "Semester 1/CS2418", | ||||||
|     "Semester 1/CS3418" |     "Semester 1/CS3418" | ||||||
|   ] |   ] | ||||||
|   | |||||||
							
								
								
									
										85
									
								
								UNB/Year 4/Semester 2/CS2333/2024-01-26.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										85
									
								
								UNB/Year 4/Semester 2/CS2333/2024-01-26.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,85 @@ | |||||||
|  | # Finite Automata | ||||||
|  | Simple machines that take in strings (sequences of symbols) as input and recognize whether or note each input string satisfies some condition(s) | ||||||
|  |  | ||||||
|  | Finite automata use states to keep track of important information about symbols | ||||||
|  |  | ||||||
|  | ## Mathematical definition of a finite automaton | ||||||
|  | $M = (Q, \sum, \delta, q, F)$ | ||||||
|  | - $Q$ is a finite set of states | ||||||
|  | - $\sum$ is a finite set of input symbols called the input alphabet | ||||||
|  | - $\delta$ is the transition function | ||||||
|  | 	- Takes every pair consisting of a state and an input smbol and returns the next state, this tells us everything we need to know about what the machine does in one computation step | ||||||
|  | - $q \in Q$ is the start state | ||||||
|  | - $F \subseteq Q$ is the set of accept states | ||||||
|  |  | ||||||
|  | ## Acceptance by a finite automaton | ||||||
|  | Let M be a finite automaton | ||||||
|  | Let $w = w_1, w_2, ..., w_n$ be n input string over \sum | ||||||
|  | As input string w is process by $M$, define the sequence of visited states $r_0, r_1, ..., r_n$ as follows: | ||||||
|  | - $r_0 = q$ | ||||||
|  | - $\forall i = 0,1, ... n-1, r_{i+1} = \delta(r_i, w_{i+1})$ | ||||||
|  | If $r_n \in F$ then $M$ accepts $w$, otherwise $M$ rejects $w$ | ||||||
|  |  | ||||||
|  | Note: The empty string $\epsilon$ has length $0$, it is accepted by $M$ if any only if the start state is an accept state | ||||||
|  |  | ||||||
|  | For a given finite automaton $M$, the set of stings accepted by $M$ is the language of $M$ and is denoted $L(M)$ | ||||||
|  |  | ||||||
|  | A language $A$ is called regular if there exists a finite automaton $M$ such that $A = L(M)$ | ||||||
|  |  | ||||||
|  | ## Example of finite automata | ||||||
|  | A finite automation $M_1$ that accepts | ||||||
|  | $$\{w \in \{0,1\}^* \ | \ n_1(w) \geq 2\}$$ | ||||||
|  | (State diagram on board) | ||||||
|  | A is the start sate and C is the accept state | ||||||
|  | A -> B (On 1) | ||||||
|  | B -> C (On 1) | ||||||
|  | A -> A (On 0) | ||||||
|  | B -> B (On 0) | ||||||
|  | C -> C (On 0, 1) | ||||||
|  |  | ||||||
|  | A: we have seen no ones yet | ||||||
|  | B: we have seen exactly one 1 | ||||||
|  | C: we have seen two ore more 1's | ||||||
|  |  | ||||||
|  | ## Example 2 of finite automata | ||||||
|  | A finite automation $M_2$ that accepts | ||||||
|  | $$\{w \in \{0,1\}^* \ | \ n_1(w) = 2\}$$ | ||||||
|  | (State diagram on board) | ||||||
|  | A is the start state and C is the accept state | ||||||
|  | A -> B (On 1) | ||||||
|  | B -> C (On 1) | ||||||
|  | C -> D (On 1) | ||||||
|  | A -> A (On 0) | ||||||
|  | B -> B (On 0) | ||||||
|  | C -> C (On 0) | ||||||
|  | D -> D (On 0, 1) | ||||||
|  |  | ||||||
|  | Note: D is an example of a dead state, in which you cannot escape after | ||||||
|  |  | ||||||
|  | ## Example 3 of finite automata | ||||||
|  | A finite automation $M_3$ that accepts | ||||||
|  | $$\{w \in \{a,b\}^* \ | \ \text{w starts with abb}\}$$ | ||||||
|  | (State diagram on board) | ||||||
|  | A is the start state and D is the accept state | ||||||
|  | A -> B (On a) | ||||||
|  | B -> C (On b) | ||||||
|  | C -> D (On b) | ||||||
|  | D -> D (On a, b) | ||||||
|  | A -> X (On b) | ||||||
|  | B -> X (On a) | ||||||
|  | C -> X (On a) | ||||||
|  | X -> X (On a ,b) | ||||||
|  |  | ||||||
|  | ## Example 4 of finite automata | ||||||
|  | A finite automation $M_4$ that accepts | ||||||
|  | (Didn't catch the definition) | ||||||
|  | $$\{w \in \{0,1\}^* \ | \ n_1(w) = 2\}$$ | ||||||
|  | (State diagram on board) | ||||||
|  | A is the start state and D is the accept state | ||||||
|  |  | ||||||
|  | (state transitions would go here) | ||||||
|  |  | ||||||
|  | A: the most recent symbol was 1 or we have seen no symbols | ||||||
|  | B: the last symbol was 0, but we have noon seen 010 yet | ||||||
|  | C: the last two symbols were 01, but we have not seen 010 | ||||||
|  | D: we have seen the pattern 010 | ||||||
		Reference in New Issue
	
	Block a user