diff --git a/.obsidian/workspace.json b/.obsidian/workspace.json index 564c4ce..5457bd9 100644 --- a/.obsidian/workspace.json +++ b/.obsidian/workspace.json @@ -158,6 +158,7 @@ }, "active": "81e5aff710e811bc", "lastOpenFiles": [ + "UNB/Year 4/Semester 2/CS2333/2024-01-19.md", "UNB/Year 4/Semester 2/CS2333/2024-01-22.md", "UNB/Year 4/Semester 2/CS3873/2024-01-22.md", "UNB/Year 4/Semester 2/CS3873/2024-01-19.md", @@ -190,7 +191,6 @@ "Semester 1/CS2418/10-27-2023.md", "Semester 1/CS3418/10-30-2023.md", "Semester 1/CS3418/10-27-2023.md", - "Semester 1/CS2418/10-25-2023.md", "Semester 1/CS2418", "Semester 1/CS3418" ] diff --git a/UNB/Year 4/Semester 2/CS2333/2024-01-22.md b/UNB/Year 4/Semester 2/CS2333/2024-01-22.md index e69de29..40c375d 100644 --- a/UNB/Year 4/Semester 2/CS2333/2024-01-22.md +++ b/UNB/Year 4/Semester 2/CS2333/2024-01-22.md @@ -0,0 +1,76 @@ +Lecture Topic: Relation examples + +# Relation Example 1 +$R = \{(i,j) | i \in \mathbb{Z}, j \in \mathbb{Z}, i-j =5n \text{ for some integer n}\}$ +e.g $(22,7) \in R$ because $22-7 = 5(3)$ +e.g $(7,22) \in R$ because $7-22 = -15 = 5(-3)$ +e.g $(22,9) \notin R$ because $22-9 = 13$, which is not a multiple of 5 + +Reflexive? Yes +For every integer a, $a-a = 0 = 5(0)$ +Therefor $(a,a) \in R$ for every integer a + +Symmetric? Yes +Let a, b be any integer, such that (a,b) is in the relation (can we prove that (b,a) is in relation as well?) + +Since (a,b) is in the relation, $a-b = 5n$, so, $b-a = -5(n) = 5(-n)$ +Note: $(b-a) = -(a-b)$ + +Transitive? Yes +Let a,b,c be any integers such that $(a,b) \in R$ and $(b,c) \in R$ +Can we prove that $(a,c) \in R$ ? + +Since $(a,b) \in R$, we know $a-b=5n$ for some $n \in \mathbb{Z}$ +Since $(b,c) \in R$, we know $b-c=5p$ for some $n \in \mathbb{Z}$ + +Now, $(a-c) = (a-b) + (b-c) = 5n + 5p = 5(np)$ +Therefore, $(a-c) \in R$ +Note: This is an integer because it is the sum of integers + +# Relation Example 2 +$R = \{(i,j) | i \in \mathbb{R}, j \in \mathbb{R}, i + 2 > j\}$ + +Examples: +- $(5,2) \in R$ because $(5+2) > 2$ +- $(3,4) \in R$ because $(3+2) > 4$ +- $(0,7) \notin R$ because $(0+2) \ngtr 7$ + +Reflexive? Yes +Symmetric? No +Transitive? No + +Proof: We need to find real numbers where $a,b,c$ where $(a,b) \in R$ and $(b,c) \in R$ but $(a,c) \notin R$ + +For example, a = 1, b = 2, c = 3 +$(1,2) \in R$ because $1+2 > 2$ +$(2,3) \in R$ because $2+2 > 3$ + +But $(1,3) \notin R$ because $(1+2) \ngtr 3$ +$\therefore$ R is not transitive + +# Equivalence relations +Equivalence relations have all three of these properties +Any equivalence relation R on a set A induces a partition of A +- Splits A into equivalence classes + - Each class contains elements that are related to themselves and to each other, but to nothing outside the class + +So, for the above relation: +$$R = \{(i,j) | i \in \mathbb{Z}, j \in \mathbb{Z}, i-j =5n \text{ for some integer n}\}$$ +This forms an equivalence relation + +So for the set of all integers, this forms 5 equivalence classes: +- $..., 0, 5, 10, ...$ +- $..., 1, 6, 11, ...$ +- $..., 2, 7, 12, ...$ +- $..., 3, 8, 13, ...$ +- $..., 4, 9, 14, ...$ + +## Example +$A = \{-3, -2, -1, 0, 1, 2, 3\}$ +$R = \{(i,j) | i \in \mathbb{A}, j \in \mathbb{A}, i^2 = j^2\}$ + +So the equivalence classes induced by this relation: +- -3, 3 +- -2, 2 +- -1, 1 +- 0 \ No newline at end of file