Renormalize files
This commit is contained in:
@@ -1,24 +1,24 @@
|
||||
Lecture Topic: Binomial Distribution
|
||||
|
||||
# Requirements of Binomial Experiments
|
||||
- (n) independent trials
|
||||
- Possible outcomes: success (S) and failure (F)
|
||||
- Success probability (p)
|
||||
|
||||
## Formula
|
||||
The pmf of binomial rv $X$ depends on two parameters $n$ and $p$. We denote the pmf by $b(x; n,p)$
|
||||
$$b(x;n,p) = \{
|
||||
\begin{pmatrix}
|
||||
n \\
|
||||
p \\
|
||||
\end{pmatrix}
|
||||
p^x(1-p)^{n-x}
|
||||
\}$$
|
||||
$x = 0, 1, 2, ..., n$
|
||||
|
||||
If X ~ b(x; n,p), then
|
||||
1. E(X) = np
|
||||
2. V(X) = np(1-p)
|
||||
|
||||
# Examples
|
||||
Lecture Topic: Binomial Distribution
|
||||
|
||||
# Requirements of Binomial Experiments
|
||||
- (n) independent trials
|
||||
- Possible outcomes: success (S) and failure (F)
|
||||
- Success probability (p)
|
||||
|
||||
## Formula
|
||||
The pmf of binomial rv $X$ depends on two parameters $n$ and $p$. We denote the pmf by $b(x; n,p)$
|
||||
$$b(x;n,p) = \{
|
||||
\begin{pmatrix}
|
||||
n \\
|
||||
p \\
|
||||
\end{pmatrix}
|
||||
p^x(1-p)^{n-x}
|
||||
\}$$
|
||||
$x = 0, 1, 2, ..., n$
|
||||
|
||||
If X ~ b(x; n,p), then
|
||||
1. E(X) = np
|
||||
2. V(X) = np(1-p)
|
||||
|
||||
# Examples
|
||||
Examples in posted pdf
|
Reference in New Issue
Block a user