--- title: "Assignment 2" subtitle: "STAT3373" author: "Isaac Shoebottom" date: "Sept 25th, 2025" output: pdf_document: default html_document: df_print: paged --- ```{r} library(tidyverse) dd <- beaver2 ``` # Question 1 mu_0 = mean temperature when activ = 0 mu_1 = mean temperature when activ = 1 $$ H_0 : \mu_0 = \mu_1, \space H_1 : \mu_0 \neq \mu_1 $$ ```{r} t.test(temp ~ activ, data = dd) ``` Reject H_0, accept H_1, we conclude that mean temperatures differ by activity level Now manually: ```{r} summary_stats <- dd %>% group_by(activ) %>% summarise( n = n(), mean_temp = mean(temp), var_temp = var(temp) ) summary_stats ``` Compute Standard Error and t stat ```{r} x0 <- summary_stats$mean_temp[summary_stats$activ == 0] x1 <- summary_stats$mean_temp[summary_stats$activ == 1] s0 <- summary_stats$var_temp[summary_stats$activ == 0] s1 <- summary_stats$var_temp[summary_stats$activ == 1] n0 <- summary_stats$n[summary_stats$activ == 0] n1 <- summary_stats$n[summary_stats$activ == 1] SE <- sqrt(s0 / n0 + s1 / n1) t_stat <- (x0 - x1) / SE t_stat ``` Compute DF ```{r} df <- (s0/n0 + s1/n1)^2 / ((s0/n0)^2/(n0-1) + (s1/n1)^2/(n1-1)) df ``` Compute p-value ```{r} p_value <- 2 * pt(-abs(t_stat), df) p_value ``` This p value also matches the conclusion that t.test reaches, reject H_0, accept H_1. We conclude that mean temperatures differ by activity level # Question 2 ```{r} dd <- iris %>% filter(Species %in% c("setosa", "versicolor")) ``` mu_0 = mean Sepal.Length for setosa mu_1 = mean Sepal.Length for versicolor $$ H_0 : \mu_0 = \mu_1, \space H_1 : \mu_0 \neq \mu_1 $$ ```{r} t.test(Sepal.Length ~ Species, data = dd) ``` p-value \< 0.05, reject H_0, accept H_1. This indicates a statistically significant difference in mean Sepal.Length between setosa and versicolor.