Update distribution.py

This commit is contained in:
Isaac Shoebottom 2024-04-22 12:52:11 -03:00
parent ee9a752d7f
commit e3566d1c21
5 changed files with 436 additions and 318 deletions

2
.idea/.gitignore vendored
View File

@ -6,3 +6,5 @@
# Datasource local storage ignored files # Datasource local storage ignored files
/dataSources/ /dataSources/
/dataSources.local.xml /dataSources.local.xml
# GitHub Copilot persisted chat sessions
/copilot/chatSessions

View File

@ -1,7 +1,9 @@
<?xml version="1.0" encoding="UTF-8"?> <?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4"> <module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager"> <component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" /> <content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/.idea/copilot/chatSessions" />
</content>
<orderEntry type="jdk" jdkName="Pipenv (casio-calculator)" jdkType="Python SDK" /> <orderEntry type="jdk" jdkName="Pipenv (casio-calculator)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" /> <orderEntry type="sourceFolder" forTests="false" />
</component> </component>

View File

@ -9,4 +9,3 @@ name = "pypi"
[requires] [requires]
python_version = "3.11" python_version = "3.11"
python_full_version = "3.11.7"

3
Pipfile.lock generated
View File

@ -1,11 +1,10 @@
{ {
"_meta": { "_meta": {
"hash": { "hash": {
"sha256": "bc82cd27f07d4e24b750064464bbc233a141778868b9a387125705e2d4e8a830" "sha256": "ed6d5d614626ae28e274e453164affb26694755170ccab3aa5866f093d51d3e4"
}, },
"pipfile-spec": 6, "pipfile-spec": 6,
"requires": { "requires": {
"python_full_version": "3.11.7",
"python_version": "3.11" "python_version": "3.11"
}, },
"sources": [ "sources": [

View File

@ -1,4 +1,5 @@
import math import math
import statistics
def factorial(n): def factorial(n):
@ -371,14 +372,117 @@ def pd_gt(x, l):
return 1 - pd_leq(x, l) return 1 - pd_leq(x, l)
def sample_mean_e(u):
"""
Computes the expected value of the sample mean.
:param u: The population mean.
:return: Returns the expected value of the sample mean.
"""
return u
def sample_mean_std(u, n):
"""
Computes the standard deviation of the sample mean.
:param u: The population mean.
:param n: The sample size.
:return: Returns the standard deviation of the sample mean.
"""
return u / n ** 0.5
def sample_mean_var(u, n):
"""
Computes the variance of the sample mean.
:param u: The population mean.
:param n: The sample size.
:return: Returns the variance of the sample mean.
"""
return (sample_mean_std(u, n) ** 2) / n
def z_score(x, u, s):
"""
Computes the z-score of a sample.
:param x: The sample mean.
:param u: The population mean.
:param s: The standard deviation of the sample mean.
:return: Returns the z-score of the sample.
"""
return (x - u) / s
def z_to_p(z):
"""
Computes the probability of a z-score.
:param z: The z-score.
:return: Returns the probability of the z-score.
"""
nd = statistics.NormalDist()
return nd.cdf(z)
def p_to_z(p):
"""
Computes the z-score of a probability.
:param p: The probability.
:return: Returns the z-score of the probability.
"""
nd = statistics.NormalDist()
return nd.inv_cdf(p)
def gamma(u, n):
"""
Computes the gamma of a sample.
:param u: The population mean.
:param n: The sample size.
:return: Returns the gamma of the sample.
"""
return sample_mean_var(u, n) / sample_mean_e(u)
def alpha(u, n):
"""
Computes the alpha of a sample.
:param u: The population mean.
:param n: The sample size.
:return: Returns the alpha of the sample.
"""
return sample_mean_e(u) / gamma(u, n)
def margin_of_error(a, s, n):
"""
Computes the margin of error of a sample.
:param a: The alpha of the sample.
:param s: The standard deviation of the sample mean.
:param n: The sample size.
:return: Returns the margin of error of the sample.
"""
return abs((p_to_z(a / 2)) * (s / (n ** 0.5)))
def confidence_interval(x, a, s, n):
"""
Computes the confidence interval of a sample.
:param x: The sample mean.
:param a: The alpha of the sample.
:param s: The standard deviation of the sample mean.
:param n: The sample size.
:return: Returns the confidence interval of the sample.
"""
return x - margin_of_error(a, s, n), x + margin_of_error(a, s, n)
def man(): def man():
""" """
Prints the manual for the module. Prints the manual for the module.
""" """
seperator = "-" * 20 separator = "-" * 20
print("This module contains functions for computing the total probability of events.") print("This module contains functions for computing the total probability of events.")
print("The functions are:") print("The functions are:")
print(seperator) print(separator)
print("Binomial Distribution") print("Binomial Distribution")
print("bnd(x, n, p)") print("bnd(x, n, p)")
print("bnd_mean(n, p)") print("bnd_mean(n, p)")
@ -388,7 +492,7 @@ def man():
print("bnd_lt(x, n, p)") print("bnd_lt(x, n, p)")
print("bnd_geq(x, n, p)") print("bnd_geq(x, n, p)")
print("bnd_gt(x, n, p)") print("bnd_gt(x, n, p)")
print(seperator) print(separator)
print("Geometric Distribution") print("Geometric Distribution")
print("gd(x, p, q)") print("gd(x, p, q)")
print("gd_mean(p)") print("gd_mean(p)")
@ -398,7 +502,7 @@ def man():
print("gd_lt(x, p, q)") print("gd_lt(x, p, q)")
print("gd_geq(x, p, q)") print("gd_geq(x, p, q)")
print("gd_gt(x, p, q)") print("gd_gt(x, p, q)")
print(seperator) print(separator)
print("Hyper Geometric Distribution") print("Hyper Geometric Distribution")
print("hgd(x, N, n, k)") print("hgd(x, N, n, k)")
print("hgd_mean(N, n, k)") print("hgd_mean(N, n, k)")
@ -408,7 +512,7 @@ def man():
print("hgd_lt(x, N, n, k)") print("hgd_lt(x, N, n, k)")
print("hgd_geq(x, N, n, k)") print("hgd_geq(x, N, n, k)")
print("hgd_gt(x, N, n, k)") print("hgd_gt(x, N, n, k)")
print(seperator) print(separator)
print("Poisson Distribution") print("Poisson Distribution")
print("pd(x, l)") print("pd(x, l)")
print("pd_mean(l)") print("pd_mean(l)")
@ -418,3 +522,15 @@ def man():
print("pd_lt(x, l)") print("pd_lt(x, l)")
print("pd_geq(x, l)") print("pd_geq(x, l)")
print("pd_gt(x, l)") print("pd_gt(x, l)")
print(separator)
print("Sample Mean")
print("sample_mean_e(u)")
print("sample_mean_std(u, n)")
print("sample_mean_var(u, n)")
print("z_score(x, u, s)")
print("z_to_p(z)")
print("p_to_z(p)")
print("gamma(u, n)")
print("alpha(u, n)")
print("margin_of_error(a, s, n)")
print("confidence_interval(x, a, s, n)")