Add HW4 and HW5
This commit is contained in:
186
HW4.Rmd
Normal file
186
HW4.Rmd
Normal file
@@ -0,0 +1,186 @@
|
||||
---
|
||||
title: "Assignment 3"
|
||||
subtitle: "STAT3373"
|
||||
author: "Isaac Shoebottom"
|
||||
date: "Oct 16th, 2025"
|
||||
output:
|
||||
pdf_document: default
|
||||
html_document:
|
||||
df_print: paged
|
||||
---
|
||||
|
||||
```{r message=FALSE, warning=FALSE}
|
||||
library(tidyverse)
|
||||
library(knitr)
|
||||
```
|
||||
|
||||
# Question 1
|
||||
|
||||
## a)
|
||||
|
||||
```{r}
|
||||
# Create the dataset
|
||||
data <- tibble(
|
||||
Farm = factor(1:4),
|
||||
Fert1 = c(48, 45, 52, 44),
|
||||
Fert2 = c(55, 50, 58, 49),
|
||||
Fert3 = c(52, 49, 55, 47)
|
||||
)
|
||||
|
||||
# Convert to long format
|
||||
long_data <- data %>%
|
||||
pivot_longer(
|
||||
cols = starts_with("Fert"),
|
||||
names_to = "Fertilizer",
|
||||
values_to = "Yield"
|
||||
) %>%
|
||||
mutate(Fertilizer = factor(Fertilizer))
|
||||
|
||||
kable(long_data, caption = "Yield Data (Bushels per Acre)")
|
||||
|
||||
```
|
||||
|
||||
## b)
|
||||
|
||||
Model: $$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$
|
||||
|
||||
```{r}
|
||||
anova_model <- aov(Yield ~ Fertilizer + Farm, data = long_data)
|
||||
|
||||
anova_table <- summary(anova_model)
|
||||
anova_table
|
||||
```
|
||||
|
||||
Conclusions:
|
||||
|
||||
- Fertilizer effect is significant (p \< 0.05)
|
||||
|
||||
- Farm (block) effect is also significant
|
||||
|
||||
## c)
|
||||
|
||||
```{r}
|
||||
tukey_results <- TukeyHSD(anova_model, "Fertilizer")
|
||||
tukey_results
|
||||
```
|
||||
|
||||
Results:
|
||||
|
||||
- Fertilizer 2 produces the highest yields
|
||||
|
||||
- All fertilizer pairs differ significantly
|
||||
|
||||
- Ordering of mean yields: Fert 2 \> Fert 3 \> Fert 1
|
||||
|
||||
Final Conclusion (alpha = 0.05)
|
||||
|
||||
- There is strong statistical evidence that fertilizer type affects yield.
|
||||
|
||||
- Blocking by farm was appropriate and reduced error variability.
|
||||
|
||||
- Fertilizer 2 is the most effective option based on yield.
|
||||
|
||||
# Question 2
|
||||
|
||||
## a)
|
||||
```{r}
|
||||
drug_data <- data.frame(
|
||||
patient = factor(rep(1:5, each = 3)),
|
||||
drug = factor(rep(c("A", "B", "C"), times = 5)),
|
||||
response_time = c(
|
||||
12, 10, 15, # Patient 1
|
||||
14, 11, 16, # Patient 2
|
||||
10, 8, 13, # Patient 3
|
||||
13, 10, 14, # Patient 4
|
||||
11, 9, 14 # Patient 5
|
||||
)
|
||||
)
|
||||
|
||||
kable(drug_data, caption = "Drug Trial Response Times (seconds)")
|
||||
```
|
||||
|
||||
## b)
|
||||
|
||||
Model: $$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$
|
||||
|
||||
```{r}
|
||||
anova_model <- aov(response_time ~ drug + patient, data = drug_data)
|
||||
summary(anova_model)
|
||||
```
|
||||
|
||||
Decision (alpha = 0.05):
|
||||
|
||||
- Drug effect is significant
|
||||
|
||||
- Patient (block) effect is significant
|
||||
|
||||
## c)
|
||||
Residual Diagnostics
|
||||
```{r}
|
||||
par(mfrow = c(1, 2))
|
||||
plot(anova_model, which = 1) # Residuals vs Fitted
|
||||
plot(anova_model, which = 2) # Normal Q-Q
|
||||
par(mfrow = c(1, 1))
|
||||
```
|
||||
|
||||
Formal Tests
|
||||
```{r}
|
||||
# Normality of residuals
|
||||
shapiro.test(residuals(anova_model))
|
||||
|
||||
# Homogeneity of variance
|
||||
bartlett.test(response_time ~ drug, data = drug_data)
|
||||
```
|
||||
|
||||
Results:
|
||||
|
||||
- Residuals are approximately normally distributed
|
||||
|
||||
- Variances across drug groups are homogeneous
|
||||
|
||||
## d)
|
||||
Multiple Comparisons
|
||||
```{r}
|
||||
tukey_results <- TukeyHSD(anova_model, "drug")
|
||||
tukey_results
|
||||
```
|
||||
|
||||
Results:
|
||||
|
||||
- All drug pairs differ significantly
|
||||
|
||||
- Ordering of mean response times: Drug B < Drug A < Drug C
|
||||
|
||||
## e)
|
||||
Mean Response Times by Drug
|
||||
```{r}
|
||||
drug_data %>%
|
||||
group_by(drug) %>%
|
||||
summarise(mean_time = mean(response_time)) %>%
|
||||
ggplot(aes(x = drug, y = mean_time)) +
|
||||
geom_col(fill = "steelblue") +
|
||||
labs(
|
||||
title = "Mean Response Time by Drug",
|
||||
x = "Drug",
|
||||
y = "Mean Response Time (seconds)"
|
||||
) +
|
||||
theme_minimal()
|
||||
```
|
||||
|
||||
|
||||
Boxplot by Drug
|
||||
```{r}
|
||||
ggplot(drug_data, aes(x = drug, y = response_time)) +
|
||||
geom_boxplot(fill = "lightgray") +
|
||||
labs(
|
||||
title = "Response Time Distribution by Drug",
|
||||
x = "Drug",
|
||||
y = "Response Time (seconds)"
|
||||
) +
|
||||
theme_minimal()
|
||||
```
|
||||
|
||||
## f)
|
||||
Conclusion:
|
||||
|
||||
At the 5% significance level, there is strong evidence that drug formulation affects patient response time. Blocking by patient was effective and significantly reduced unexplained variability. Post-hoc analysis using Tukey’s HSD showed that all three drugs differ significantly, with Drug B producing the fastest (best) response times, followed by Drug A, and then Drug C.
|
||||
127
HW5.Rmd
Normal file
127
HW5.Rmd
Normal file
@@ -0,0 +1,127 @@
|
||||
---
|
||||
title: "Assignment 3"
|
||||
subtitle: "STAT3373"
|
||||
author: "Isaac Shoebottom"
|
||||
date: "Oct 16th, 2025"
|
||||
output:
|
||||
pdf_document: default
|
||||
html_document:
|
||||
df_print: paged
|
||||
---
|
||||
|
||||
```{r message=FALSE, warning=FALSE}
|
||||
library(tidyverse)
|
||||
```
|
||||
|
||||
# Question 1
|
||||
|
||||
## a)
|
||||
|
||||
```{r}
|
||||
latin_data <- tribble(
|
||||
~sunlight, ~soil, ~treatment, ~growth,
|
||||
"Sunny", "Sandy", "C", 45,
|
||||
"Sunny", "Loamy", "A", 52,
|
||||
"Sunny", "Clay", "B", 48,
|
||||
"Sunny", "Sandy", "B", 43,
|
||||
"Sunny", "Loamy", "C", 50,
|
||||
"Sunny", "Clay", "A", 49,
|
||||
"Sunny", "Sandy", "A", 47,
|
||||
"Sunny", "Loamy", "B", 51,
|
||||
"Sunny", "Clay", "C", 46,
|
||||
|
||||
"Partial Sun", "Sandy", "A", 41,
|
||||
"Partial Sun", "Loamy", "B", 44,
|
||||
"Partial Sun", "Clay", "C", 38,
|
||||
"Partial Sun", "Sandy", "B", 39,
|
||||
"Partial Sun", "Loamy", "C", 42,
|
||||
"Partial Sun", "Clay", "A", 40,
|
||||
"Partial Sun", "Sandy", "C", 40,
|
||||
"Partial Sun", "Loamy", "A", 43,
|
||||
"Partial Sun", "Clay", "B", 41,
|
||||
|
||||
"Shade", "Sandy", "B", 32,
|
||||
"Shade", "Loamy", "C", 35,
|
||||
"Shade", "Clay", "A", 33,
|
||||
"Shade", "Sandy", "C", 31,
|
||||
"Shade", "Loamy", "A", 36,
|
||||
"Shade", "Clay", "B", 34,
|
||||
"Shade", "Sandy", "A", 30,
|
||||
"Shade", "Loamy", "B", 33,
|
||||
"Shade", "Clay", "C", 32
|
||||
)
|
||||
|
||||
latin_data
|
||||
```
|
||||
|
||||
## b)
|
||||
|
||||
|
||||
```{r}
|
||||
treatment_means <- latin_data %>%
|
||||
group_by(treatment) %>%
|
||||
summarise(mean_growth = mean(growth))
|
||||
|
||||
treatment_means
|
||||
```
|
||||
|
||||
## c)
|
||||
|
||||
Mean Growth by Sunlight Level
|
||||
```{r}
|
||||
sunlight_means <- latin_data %>%
|
||||
group_by(sunlight) %>%
|
||||
summarise(mean_growth = mean(growth))
|
||||
|
||||
sunlight_means
|
||||
```
|
||||
|
||||
Mean Growth by Soil Type
|
||||
```{r}
|
||||
soil_means <- latin_data %>%
|
||||
group_by(soil) %>%
|
||||
summarise(mean_growth = mean(growth))
|
||||
|
||||
soil_means
|
||||
```
|
||||
|
||||
## d)
|
||||
|
||||
From the descriptive statistics:
|
||||
|
||||
Sunlight effects: Growth is highest under Sunny, moderate under Partial Sun, and lowest under Shade. This suggests sunlight has a strong positive effect on growth.
|
||||
|
||||
Soil effects: Loamy soil consistently produces higher growth than Sandy or Clay, indicating soil type is an important blocking factor.
|
||||
|
||||
Treatment effects: If the treatment means differ noticeably:
|
||||
|
||||
- The watering schedule with the highest mean appears most effective.
|
||||
|
||||
- Smaller differences suggest weaker treatment effects relative to blocking factors.
|
||||
|
||||
- Because the Latin square controls for sunlight and soil, observed treatment differences are less confounded.
|
||||
|
||||
## e)
|
||||
A Latin square ANOVA partitions variation into:
|
||||
|
||||
- Sunlight (row effect)
|
||||
|
||||
- Soil type (column effect)
|
||||
|
||||
- Treatment effect
|
||||
|
||||
- Error
|
||||
|
||||
Expected Findings:
|
||||
|
||||
- Sunlight effect: Likely highly significant, given the strong gradient from Sunny to Shade.
|
||||
|
||||
- Soil effect: Likely significant, especially if Loamy soil dominates.
|
||||
|
||||
- Treatment effect:
|
||||
|
||||
- Possibly significant if Daily watering shows consistently higher growth.
|
||||
|
||||
- Could be marginal if differences among watering schedules are small compared to sunlight and soil.
|
||||
|
||||
- Error variance: Expected to be relatively small due to strong blocking.
|
||||
Reference in New Issue
Block a user