Add some cdf functions from std lib
This commit is contained in:
parent
e3566d1c21
commit
cdc19c0509
79
cdf.py
Normal file
79
cdf.py
Normal file
@ -0,0 +1,79 @@
|
||||
import math
|
||||
|
||||
|
||||
def normal_dist_cdf(x, mu=0.0, sigma=1.0):
|
||||
return 0.5 * (1.0 + math.erf((x - mu) / (sigma * (2 ** 0.5))))
|
||||
|
||||
|
||||
def normal_dist_inv_cdf(p, mu=0.0, sigma=1.0):
|
||||
# There is no closed-form solution to the inverse CDF for the normal
|
||||
# distribution, so we use a rational approximation instead:
|
||||
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||||
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||||
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||||
q = p - 0.5
|
||||
if math.fabs(q) <= 0.425:
|
||||
r = 0.180625 - q * q
|
||||
# Hash sum: 55.88319_28806_14901_4439
|
||||
num = (((((((2.50908_09287_30122_6727e+3 * r +
|
||||
3.34305_75583_58812_8105e+4) * r +
|
||||
6.72657_70927_00870_0853e+4) * r +
|
||||
4.59219_53931_54987_1457e+4) * r +
|
||||
1.37316_93765_50946_1125e+4) * r +
|
||||
1.97159_09503_06551_4427e+3) * r +
|
||||
1.33141_66789_17843_7745e+2) * r +
|
||||
3.38713_28727_96366_6080e+0) * q
|
||||
den = (((((((5.22649_52788_52854_5610e+3 * r +
|
||||
2.87290_85735_72194_2674e+4) * r +
|
||||
3.93078_95800_09271_0610e+4) * r +
|
||||
2.12137_94301_58659_5867e+4) * r +
|
||||
5.39419_60214_24751_1077e+3) * r +
|
||||
6.87187_00749_20579_0830e+2) * r +
|
||||
4.23133_30701_60091_1252e+1) * r +
|
||||
1.0)
|
||||
x = num / den
|
||||
return mu + (x * sigma)
|
||||
r = p if q <= 0.0 else 1.0 - p
|
||||
r = math.sqrt(-math.log(r))
|
||||
if r <= 5.0:
|
||||
r = r - 1.6
|
||||
# Hash sum: 49.33206_50330_16102_89036
|
||||
num = (((((((7.74545_01427_83414_07640e-4 * r +
|
||||
2.27238_44989_26918_45833e-2) * r +
|
||||
2.41780_72517_74506_11770e-1) * r +
|
||||
1.27045_82524_52368_38258e+0) * r +
|
||||
3.64784_83247_63204_60504e+0) * r +
|
||||
5.76949_72214_60691_40550e+0) * r +
|
||||
4.63033_78461_56545_29590e+0) * r +
|
||||
1.42343_71107_49683_57734e+0)
|
||||
den = (((((((1.05075_00716_44416_84324e-9 * r +
|
||||
5.47593_80849_95344_94600e-4) * r +
|
||||
1.51986_66563_61645_71966e-2) * r +
|
||||
1.48103_97642_74800_74590e-1) * r +
|
||||
6.89767_33498_51000_04550e-1) * r +
|
||||
1.67638_48301_83803_84940e+0) * r +
|
||||
2.05319_16266_37758_82187e+0) * r +
|
||||
1.0)
|
||||
else:
|
||||
r = r - 5.0
|
||||
# Hash sum: 47.52583_31754_92896_71629
|
||||
num = (((((((2.01033_43992_92288_13265e-7 * r +
|
||||
2.71155_55687_43487_57815e-5) * r +
|
||||
1.24266_09473_88078_43860e-3) * r +
|
||||
2.65321_89526_57612_30930e-2) * r +
|
||||
2.96560_57182_85048_91230e-1) * r +
|
||||
1.78482_65399_17291_33580e+0) * r +
|
||||
5.46378_49111_64114_36990e+0) * r +
|
||||
6.65790_46435_01103_77720e+0)
|
||||
den = (((((((2.04426_31033_89939_78564e-15 * r +
|
||||
1.42151_17583_16445_88870e-7) * r +
|
||||
1.84631_83175_10054_68180e-5) * r +
|
||||
7.86869_13114_56132_59100e-4) * r +
|
||||
1.48753_61290_85061_48525e-2) * r +
|
||||
1.36929_88092_27358_05310e-1) * r +
|
||||
5.99832_20655_58879_37690e-1) * r +
|
||||
1.0)
|
||||
x = num / den
|
||||
if q < 0.0:
|
||||
x = -x
|
||||
return mu + (x * sigma)
|
@ -1,5 +1,5 @@
|
||||
import math
|
||||
import statistics
|
||||
import cdf
|
||||
|
||||
|
||||
def factorial(n):
|
||||
@ -418,8 +418,8 @@ def z_to_p(z):
|
||||
:param z: The z-score.
|
||||
:return: Returns the probability of the z-score.
|
||||
"""
|
||||
nd = statistics.NormalDist()
|
||||
return nd.cdf(z)
|
||||
|
||||
return cdf.normal_dist_cdf(z)
|
||||
|
||||
|
||||
def p_to_z(p):
|
||||
@ -428,8 +428,7 @@ def p_to_z(p):
|
||||
:param p: The probability.
|
||||
:return: Returns the z-score of the probability.
|
||||
"""
|
||||
nd = statistics.NormalDist()
|
||||
return nd.inv_cdf(p)
|
||||
return cdf.normal_dist_inv_cdf(p)
|
||||
|
||||
|
||||
def gamma(u, n):
|
||||
|
Loading…
Reference in New Issue
Block a user