Compare commits
12 Commits
43efbd1a8a
...
master
Author | SHA1 | Date | |
---|---|---|---|
4579978900 | |||
cdc19c0509 | |||
e3566d1c21 | |||
ee9a752d7f | |||
82228b3704 | |||
de97600b7a | |||
16efeef8e1 | |||
96b29f0bac | |||
b0e72be1d0 | |||
3426d4575c | |||
3816763622 | |||
9a5f57d20c |
2
.idea/.gitignore
generated
vendored
2
.idea/.gitignore
generated
vendored
@ -6,3 +6,5 @@
|
||||
# Datasource local storage ignored files
|
||||
/dataSources/
|
||||
/dataSources.local.xml
|
||||
# GitHub Copilot persisted chat sessions
|
||||
/copilot/chatSessions
|
||||
|
4
.idea/casio-calculator.iml
generated
4
.idea/casio-calculator.iml
generated
@ -1,7 +1,9 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/.idea/copilot/chatSessions" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Pipenv (casio-calculator)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
|
2
.idea/modules.xml
generated
2
.idea/modules.xml
generated
@ -2,7 +2,7 @@
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/Calculator.iml" filepath="$PROJECT_DIR$/.idea/Calculator.iml" />
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/casio-calculator.iml" filepath="$PROJECT_DIR$/.idea/casio-calculator.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
1
Pipfile
1
Pipfile
@ -9,4 +9,3 @@ name = "pypi"
|
||||
|
||||
[requires]
|
||||
python_version = "3.11"
|
||||
python_full_version = "3.11.7"
|
||||
|
3
Pipfile.lock
generated
3
Pipfile.lock
generated
@ -1,11 +1,10 @@
|
||||
{
|
||||
"_meta": {
|
||||
"hash": {
|
||||
"sha256": "bc82cd27f07d4e24b750064464bbc233a141778868b9a387125705e2d4e8a830"
|
||||
"sha256": "ed6d5d614626ae28e274e453164affb26694755170ccab3aa5866f093d51d3e4"
|
||||
},
|
||||
"pipfile-spec": 6,
|
||||
"requires": {
|
||||
"python_full_version": "3.11.7",
|
||||
"python_version": "3.11"
|
||||
},
|
||||
"sources": [
|
||||
|
79
cdf.py
Normal file
79
cdf.py
Normal file
@ -0,0 +1,79 @@
|
||||
import math
|
||||
|
||||
|
||||
def normal_dist_cdf(x, mu=0.0, sigma=1.0):
|
||||
return 0.5 * (1.0 + math.erf((x - mu) / (sigma * (2 ** 0.5))))
|
||||
|
||||
|
||||
def normal_dist_inv_cdf(p, mu=0.0, sigma=1.0):
|
||||
# There is no closed-form solution to the inverse CDF for the normal
|
||||
# distribution, so we use a rational approximation instead:
|
||||
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||||
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||||
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||||
q = p - 0.5
|
||||
if math.fabs(q) <= 0.425:
|
||||
r = 0.180625 - q * q
|
||||
# Hash sum: 55.88319_28806_14901_4439
|
||||
num = (((((((2.5090809287301226727e+3 * r +
|
||||
3.3430575583588128105e+4) * r +
|
||||
6.7265770927008700853e+4) * r +
|
||||
4.5921953931549871457e+4) * r +
|
||||
1.3731693765509461125e+4) * r +
|
||||
1.9715909503065514427e+3) * r +
|
||||
1.3314166789178437745e+2) * r +
|
||||
3.3871328727963666080e+0) * q
|
||||
den = (((((((5.2264952788528545610e+3 * r +
|
||||
2.8729085735721942674e+4) * r +
|
||||
3.9307895800092710610e+4) * r +
|
||||
2.1213794301586595867e+4) * r +
|
||||
5.3941960214247511077e+3) * r +
|
||||
6.8718700749205790830e+2) * r +
|
||||
4.2313330701600911252e+1) * r +
|
||||
1.0)
|
||||
x = num / den
|
||||
return mu + (x * sigma)
|
||||
r = p if q <= 0.0 else 1.0 - p
|
||||
r = math.sqrt(-math.log(r))
|
||||
if r <= 5.0:
|
||||
r = r - 1.6
|
||||
# Hash sum: 49.33206_50330_16102_89036
|
||||
num = (((((((7.74545014278341407640e-4 * r +
|
||||
2.27238449892691845833e-2) * r +
|
||||
2.41780725177450611770e-1) * r +
|
||||
1.27045825245236838258e+0) * r +
|
||||
3.64784832476320460504e+0) * r +
|
||||
5.76949722146069140550e+0) * r +
|
||||
4.63033784615654529590e+0) * r +
|
||||
1.42343711074968357734e+0)
|
||||
den = (((((((1.05075007164441684324e-9 * r +
|
||||
5.47593808499534494600e-4) * r +
|
||||
1.51986665636164571966e-2) * r +
|
||||
1.48103976427480074590e-1) * r +
|
||||
6.89767334985100004550e-1) * r +
|
||||
1.67638483018380384940e+0) * r +
|
||||
2.05319162663775882187e+0) * r +
|
||||
1.0)
|
||||
else:
|
||||
r = r - 5.0
|
||||
# Hash sum: 47.52583317549289671629
|
||||
num = (((((((2.01033439929228813265e-7 * r +
|
||||
2.71155556874348757815e-5) * r +
|
||||
1.24266094738807843860e-3) * r +
|
||||
2.65321895265761230930e-2) * r +
|
||||
2.96560571828504891230e-1) * r +
|
||||
1.78482653991729133580e+0) * r +
|
||||
5.46378491116411436990e+0) * r +
|
||||
6.65790464350110377720e+0)
|
||||
den = (((((((2.04426310338993978564e-15 * r +
|
||||
1.42151175831644588870e-7) * r +
|
||||
1.84631831751005468180e-5) * r +
|
||||
7.86869131145613259100e-4) * r +
|
||||
1.48753612908506148525e-2) * r +
|
||||
1.36929880922735805310e-1) * r +
|
||||
5.99832206555887937690e-1) * r +
|
||||
1.0)
|
||||
x = num / den
|
||||
if q < 0.0:
|
||||
x = -x
|
||||
return mu + (x * sigma)
|
344
distribution.py
344
distribution.py
@ -1,4 +1,28 @@
|
||||
import math
|
||||
import cdf
|
||||
|
||||
|
||||
def factorial(n):
|
||||
"""
|
||||
Computes the factorial of a number.
|
||||
:param n: The number to compute the factorial of.
|
||||
:return: Returns the factorial of the number.
|
||||
"""
|
||||
if n == 0:
|
||||
return 1
|
||||
for i in range(1, n):
|
||||
n *= i
|
||||
return n
|
||||
|
||||
|
||||
def combination(n, r):
|
||||
"""
|
||||
Computes the combination of n choose r.
|
||||
:param n: The number of items.
|
||||
:param r: The number of items to choose.
|
||||
:return: Returns the number of ways to choose r items from n items.
|
||||
"""
|
||||
return factorial(n) / (factorial(r) * factorial(n - r))
|
||||
|
||||
|
||||
def bnd(x, n, p):
|
||||
@ -9,7 +33,7 @@ def bnd(x, n, p):
|
||||
:param p: Probability of success.
|
||||
:return: Returns the probability of getting x successes in n trials.
|
||||
"""
|
||||
return math.comb(n, x) * p ** x * (1 - p) ** (n - x)
|
||||
return combination(n, x) * p ** x * (1 - p) ** (n - x)
|
||||
|
||||
|
||||
def bnd_mean(n, p):
|
||||
@ -42,26 +66,48 @@ def bnd_std(n, p):
|
||||
return bnd_var(n, p) ** 0.5
|
||||
|
||||
|
||||
def bnd_upto(x, n, p):
|
||||
def bnd_leq(x, n, p):
|
||||
"""
|
||||
Computes the cumulative probability of getting upto x successes in n trials.
|
||||
Computes the cumulative probability less than or equal to x successes in n trials.
|
||||
:param x: Number of successes.
|
||||
:param n: Number of trials.
|
||||
:param p: Probability of success.
|
||||
:return: Returns the cumulative probability of getting upto x successes in n trials.
|
||||
:return: Returns the cumulative probability less than or equal to x successes in n trials.
|
||||
"""
|
||||
return sum(bnd(i, n, p) for i in range(x + 1))
|
||||
|
||||
|
||||
def bnd_from(x, n, p):
|
||||
def bnd_lt(x, n, p):
|
||||
"""
|
||||
Computes the cumulative probability of getting from x successes in n trials.
|
||||
Computes the cumulative probability less than x successes in n trials.
|
||||
:param x: Number of successes.
|
||||
:param n: Number of trials.
|
||||
:param p: Probability of success.
|
||||
:return: Returns the cumulative probability of getting from x successes in n trials.
|
||||
:return: Returns the cumulative probability less than x successes in n trials.
|
||||
"""
|
||||
return 1 - bnd_upto(x - 1, n, p)
|
||||
return sum(bnd(i, n, p) for i in range(x))
|
||||
|
||||
|
||||
def bnd_geq(x, n, p):
|
||||
"""
|
||||
Computes the cumulative probability greater than or equal to x successes in n trials.
|
||||
:param x: Number of successes.
|
||||
:param n: Number of trials.
|
||||
:param p: Probability of success.
|
||||
:return: Returns the cumulative probability greater than or equal to x successes in n trials.
|
||||
"""
|
||||
return 1 - bnd_lt(x, n, p)
|
||||
|
||||
|
||||
def bnd_gt(x, n, p):
|
||||
"""
|
||||
Computes the cumulative probability greater than x successes in n trials.
|
||||
:param x: Number of successes.
|
||||
:param n: Number of trials.
|
||||
:param p: Probability of success.
|
||||
:return: Returns the cumulative probability greater than x successes in n trials.
|
||||
"""
|
||||
return 1 - bnd_leq(x, n, p)
|
||||
|
||||
|
||||
def gd(x, p, q=None):
|
||||
@ -104,24 +150,56 @@ def gd_std(p):
|
||||
return gd_var(p) ** 0.5
|
||||
|
||||
|
||||
def gd_upto(x, p):
|
||||
def gd_leq(x, p, q=None):
|
||||
"""
|
||||
Computes the cumulative probability of getting upto x trials until the first success.
|
||||
:param x: Number of trials until the first success.
|
||||
:param p: Probability of success.
|
||||
:param q: Probability of failure.
|
||||
:return: Returns the cumulative probability of getting upto x trials until the first success.
|
||||
"""
|
||||
if q is not None:
|
||||
return sum(gd(i, p, q) for i in range(1, x + 1))
|
||||
return sum(gd(i, p) for i in range(1, x + 1))
|
||||
|
||||
|
||||
def gd_from(x, p):
|
||||
def gd_lt(x, p, q=None):
|
||||
"""
|
||||
Computes the cumulative probability of getting less than x trials until the first success.
|
||||
:param x: Number of trials until the first success.
|
||||
:param p: Probability of success.
|
||||
:param q: Probability of failure.
|
||||
:return: Returns the cumulative probability of getting less than x trials until the first success.
|
||||
"""
|
||||
if q is not None:
|
||||
return sum(gd(i, p, q) for i in range(1, x))
|
||||
return sum(gd(i, p) for i in range(1, x))
|
||||
|
||||
|
||||
def gd_geq(x, p, q=None):
|
||||
"""
|
||||
Computes the cumulative probability of getting from x trials until the first success.
|
||||
:param x: Number of trials until the first success.
|
||||
:param p: Probability of success.
|
||||
:param q: Probability of failure.
|
||||
:return: Returns the cumulative probability of getting from x trials until the first success.
|
||||
"""
|
||||
return 1 - gd_upto(x - 1, p)
|
||||
if q is not None:
|
||||
return 1 - gd_lt(x, p, q)
|
||||
return 1 - gd_leq(x, p)
|
||||
|
||||
|
||||
def gd_gt(x, p, q=None):
|
||||
"""
|
||||
Computes the cumulative probability of getting from x trials until the first success.
|
||||
:param x: Number of trials until the first success.
|
||||
:param p: Probability of success.
|
||||
:param q: Probability of failure.
|
||||
:return: Returns the cumulative probability of getting from x trials until the first success.
|
||||
"""
|
||||
if q is not None:
|
||||
return 1 - gd_leq(x, p, q)
|
||||
return 1 - gd_leq(x, p)
|
||||
|
||||
|
||||
def hgd(x, N, n, k):
|
||||
@ -133,7 +211,7 @@ def hgd(x, N, n, k):
|
||||
:param k: Number of successes in the population.
|
||||
:return: Returns the probability of getting x successes in n draws from a population of size N with k successes.
|
||||
"""
|
||||
return (math.comb(k, x) * math.comb(N - k, n - x)) / math.comb(N, n)
|
||||
return (combination(k, x) * combination(N - k, n - x)) / combination(N, n)
|
||||
|
||||
|
||||
def hgd_mean(N, n, k):
|
||||
@ -169,7 +247,7 @@ def hgd_std(N, n, k):
|
||||
return hgd_var(N, n, k) ** 0.5
|
||||
|
||||
|
||||
def hgd_upto(x, N, n, k):
|
||||
def hgd_leq(x, N, n, k):
|
||||
"""
|
||||
Computes the cumulative probability of getting upto x successes in n draws from a population of size N with k successes.
|
||||
:param x: Number of successes in the sample.
|
||||
@ -181,7 +259,19 @@ def hgd_upto(x, N, n, k):
|
||||
return sum(hgd(i, N, n, k) for i in range(x + 1))
|
||||
|
||||
|
||||
def hgd_from(x, N, n, k):
|
||||
def hgd_lt(x, N, n, k):
|
||||
"""
|
||||
Computes the cumulative probability of getting less than x successes in n draws from a population of size N with k successes.
|
||||
:param x: Number of successes in the sample.
|
||||
:param N: Number of items in the population.
|
||||
:param n: Number of draws.
|
||||
:param k: Number of successes in the population.
|
||||
:return: Returns the cumulative probability of getting less than x successes in n draws from a population of size N with k successes.
|
||||
"""
|
||||
return sum(hgd(i, N, n, k) for i in range(x))
|
||||
|
||||
|
||||
def hgd_geq(x, N, n, k):
|
||||
"""
|
||||
Computes the cumulative probability of getting from x successes in n draws from a population of size N with k successes.
|
||||
:param x: Number of successes in the sample.
|
||||
@ -190,7 +280,19 @@ def hgd_from(x, N, n, k):
|
||||
:param k: Number of successes in the population.
|
||||
:return: Returns the cumulative probability of getting from x successes in n draws from a population of size N with k successes.
|
||||
"""
|
||||
return 1 - hgd_upto(x - 1, N, n, k)
|
||||
return 1 - hgd_lt(x, N, n, k)
|
||||
|
||||
|
||||
def hgd_gt(x, N, n, k):
|
||||
"""
|
||||
Computes the cumulative probability of getting from x successes in n draws from a population of size N with k successes.
|
||||
:param x: Number of successes in the sample.
|
||||
:param N: Number of items in the population.
|
||||
:param n: Number of draws.
|
||||
:param k: Number of successes in the population.
|
||||
:return: Returns the cumulative probability of getting from x successes in n draws from a population of size N with k successes.
|
||||
"""
|
||||
return 1 - hgd_leq(x, N, n, k)
|
||||
|
||||
|
||||
def pd(x, l):
|
||||
@ -200,7 +302,7 @@ def pd(x, l):
|
||||
:param l: Average number of occurrences.
|
||||
:return: Returns the probability of getting x occurrences.
|
||||
"""
|
||||
return (l ** x * math.e ** -l) / math.factorial(x)
|
||||
return (l ** x * math.e ** -l) / factorial(x)
|
||||
|
||||
|
||||
def pd_mean(l):
|
||||
@ -230,7 +332,7 @@ def pd_std(l):
|
||||
return l ** 0.5
|
||||
|
||||
|
||||
def pd_upto(x, l):
|
||||
def pd_leq(x, l):
|
||||
"""
|
||||
Computes the cumulative probability of getting upto x occurrences.
|
||||
:param x: Number of occurrences.
|
||||
@ -240,42 +342,194 @@ def pd_upto(x, l):
|
||||
return sum(pd(i, l) for i in range(x + 1))
|
||||
|
||||
|
||||
def pd_from(x, l):
|
||||
def pd_lt(x, l):
|
||||
"""
|
||||
Computes the cumulative probability of getting less than x occurrences.
|
||||
:param x: Number of occurrences.
|
||||
:param l: Average number of occurrences.
|
||||
:return: Returns the cumulative probability of getting less than x occurrences.
|
||||
"""
|
||||
return sum(pd(i, l) for i in range(x))
|
||||
|
||||
|
||||
def pd_geq(x, l):
|
||||
"""
|
||||
Computes the cumulative probability of getting from x occurrences.
|
||||
:param x: Number of occurrences.
|
||||
:param l: Average number of occurrences.
|
||||
:return: Returns the cumulative probability of getting from x occurrences.
|
||||
"""
|
||||
return 1 - pd_upto(x - 1, l)
|
||||
return 1 - pd_lt(x, l)
|
||||
|
||||
|
||||
def pd_gt(x, l):
|
||||
"""
|
||||
Computes the cumulative probability of getting from x occurrences.
|
||||
:param x: Number of occurrences.
|
||||
:param l: Average number of occurrences.
|
||||
:return: Returns the cumulative probability of getting from x occurrences.
|
||||
"""
|
||||
return 1 - pd_leq(x, l)
|
||||
|
||||
|
||||
def sample_mean_e(u):
|
||||
"""
|
||||
Computes the expected value of the sample mean.
|
||||
:param u: The population mean.
|
||||
:return: Returns the expected value of the sample mean.
|
||||
"""
|
||||
return u
|
||||
|
||||
|
||||
def sample_mean_std(u, n):
|
||||
"""
|
||||
Computes the standard deviation of the sample mean.
|
||||
:param u: The population mean.
|
||||
:param n: The sample size.
|
||||
:return: Returns the standard deviation of the sample mean.
|
||||
"""
|
||||
return u / n ** 0.5
|
||||
|
||||
|
||||
def sample_mean_var(u, n):
|
||||
"""
|
||||
Computes the variance of the sample mean.
|
||||
:param u: The population mean.
|
||||
:param n: The sample size.
|
||||
:return: Returns the variance of the sample mean.
|
||||
"""
|
||||
return (sample_mean_std(u, n) ** 2) / n
|
||||
|
||||
|
||||
def z_score(x, u, s):
|
||||
"""
|
||||
Computes the z-score of a sample.
|
||||
:param x: The sample mean.
|
||||
:param u: The population mean.
|
||||
:param s: The standard deviation of the sample mean.
|
||||
:return: Returns the z-score of the sample.
|
||||
"""
|
||||
return (x - u) / s
|
||||
|
||||
|
||||
def z_to_p(z):
|
||||
"""
|
||||
Computes the probability of a z-score.
|
||||
:param z: The z-score.
|
||||
:return: Returns the probability of the z-score.
|
||||
"""
|
||||
|
||||
return cdf.normal_dist_cdf(z)
|
||||
|
||||
|
||||
def p_to_z(p):
|
||||
"""
|
||||
Computes the z-score of a probability.
|
||||
:param p: The probability.
|
||||
:return: Returns the z-score of the probability.
|
||||
"""
|
||||
return cdf.normal_dist_inv_cdf(p)
|
||||
|
||||
|
||||
def gamma(u, n):
|
||||
"""
|
||||
Computes the gamma of a sample.
|
||||
:param u: The population mean.
|
||||
:param n: The sample size.
|
||||
:return: Returns the gamma of the sample.
|
||||
"""
|
||||
return sample_mean_var(u, n) / sample_mean_e(u)
|
||||
|
||||
|
||||
def alpha(u, n):
|
||||
"""
|
||||
Computes the alpha of a sample.
|
||||
:param u: The population mean.
|
||||
:param n: The sample size.
|
||||
:return: Returns the alpha of the sample.
|
||||
"""
|
||||
return sample_mean_e(u) / gamma(u, n)
|
||||
|
||||
|
||||
def margin_of_error(a, s, n):
|
||||
"""
|
||||
Computes the margin of error of a sample.
|
||||
:param a: The alpha of the sample.
|
||||
:param s: The standard deviation of the sample mean.
|
||||
:param n: The sample size.
|
||||
:return: Returns the margin of error of the sample.
|
||||
"""
|
||||
return abs((p_to_z(a / 2)) * (s / (n ** 0.5)))
|
||||
|
||||
|
||||
def confidence_interval(x, a, s, n):
|
||||
"""
|
||||
Computes the confidence interval of a sample.
|
||||
:param x: The sample mean.
|
||||
:param a: The alpha of the sample.
|
||||
:param s: The standard deviation of the sample mean.
|
||||
:param n: The sample size.
|
||||
:return: Returns the confidence interval of the sample.
|
||||
"""
|
||||
return x - margin_of_error(a, s, n), x + margin_of_error(a, s, n)
|
||||
|
||||
|
||||
def man():
|
||||
"""
|
||||
Prints the manual for the module.
|
||||
"""
|
||||
separator = "-" * 20
|
||||
print("This module contains functions for computing the total probability of events.")
|
||||
print("The functions are:")
|
||||
print("bnd(x, n, p) - The binomial distribution")
|
||||
print("bnd_mean(n, p) - The mean of the binomial distribution")
|
||||
print("bnd_var(n, p) - The variance of the binomial distribution")
|
||||
print("bnd_std(n, p) - The standard deviation of the binomial distribution")
|
||||
print("bnd_upto(x, n, p) - The cumulative probability of getting upto x successes in n trials")
|
||||
print("bnd_from(x, n, p) - The cumulative probability of getting from x successes in n trials")
|
||||
print("gd(x, p, q) - The geometric distribution")
|
||||
print("gd_mean(p) - The mean of the geometric distribution")
|
||||
print("gd_var(p) - The variance of the geometric distribution")
|
||||
print("gd_std(p) - The standard deviation of the geometric distribution")
|
||||
print("gd_upto(x, p) - The cumulative probability of getting upto x trials until the first success")
|
||||
print("gd_from(x, p) - The cumulative probability of getting from x trials until the first success")
|
||||
print("hgd(x, N, n, k) - The hyper geometric distribution")
|
||||
print("hgd_mean(N, n, k) - The mean of the hyper geometric distribution")
|
||||
print("hgd_var(N, n, k) - The variance of the hyper geometric distribution")
|
||||
print("hgd_std(N, n, k) - The standard deviation of the hyper geometric distribution")
|
||||
print(
|
||||
"hgd_upto(x, N, n, k) - The cumulative probability of getting upto x successes in n draws from a population of size N with k successes")
|
||||
print(
|
||||
"hgd_from(x, N, n, k) - The cumulative probability of getting from x successes in n draws from a population of size N with k successes")
|
||||
print("pd(x, l) - The poisson distribution")
|
||||
print("pd_mean(l) - The mean of the poisson distribution")
|
||||
print("pd_var(l) - The variance of the poisson distribution")
|
||||
print("pd_std(l) - The standard deviation of the poisson distribution")
|
||||
print("pd_upto(x, l) - The cumulative probability of getting upto x occurrences")
|
||||
print("pd_from(x, l) - The cumulative probability of getting from x occurrences")
|
||||
print(separator)
|
||||
print("Binomial Distribution")
|
||||
print("bnd(x, n, p)")
|
||||
print("bnd_mean(n, p)")
|
||||
print("bnd_var(n, p)")
|
||||
print("bnd_std(n, p)")
|
||||
print("bnd_leq(x, n, p)")
|
||||
print("bnd_lt(x, n, p)")
|
||||
print("bnd_geq(x, n, p)")
|
||||
print("bnd_gt(x, n, p)")
|
||||
print(separator)
|
||||
print("Geometric Distribution")
|
||||
print("gd(x, p, q)")
|
||||
print("gd_mean(p)")
|
||||
print("gd_var(p)")
|
||||
print("gd_std(p)")
|
||||
print("gd_leq(x, p, q)")
|
||||
print("gd_lt(x, p, q)")
|
||||
print("gd_geq(x, p, q)")
|
||||
print("gd_gt(x, p, q)")
|
||||
print(separator)
|
||||
print("Hyper Geometric Distribution")
|
||||
print("hgd(x, N, n, k)")
|
||||
print("hgd_mean(N, n, k)")
|
||||
print("hgd_var(N, n, k)")
|
||||
print("hgd_std(N, n, k)")
|
||||
print("hgd_leq(x, N, n, k)")
|
||||
print("hgd_lt(x, N, n, k)")
|
||||
print("hgd_geq(x, N, n, k)")
|
||||
print("hgd_gt(x, N, n, k)")
|
||||
print(separator)
|
||||
print("Poisson Distribution")
|
||||
print("pd(x, l)")
|
||||
print("pd_mean(l)")
|
||||
print("pd_var(l)")
|
||||
print("pd_std(l)")
|
||||
print("pd_leq(x, l)")
|
||||
print("pd_lt(x, l)")
|
||||
print("pd_geq(x, l)")
|
||||
print("pd_gt(x, l)")
|
||||
print(separator)
|
||||
print("Sample Mean")
|
||||
print("sample_mean_e(u)")
|
||||
print("sample_mean_std(u, n)")
|
||||
print("sample_mean_var(u, n)")
|
||||
print("z_score(x, u, s)")
|
||||
print("z_to_p(z)")
|
||||
print("p_to_z(p)")
|
||||
print("gamma(u, n)")
|
||||
print("alpha(u, n)")
|
||||
print("margin_of_error(a, s, n)")
|
||||
print("confidence_interval(x, a, s, n)")
|
||||
|
@ -34,9 +34,12 @@ def n(A):
|
||||
|
||||
|
||||
def man():
|
||||
"""
|
||||
Prints the manual for the module.
|
||||
"""
|
||||
print("This module contains functions for computing the total probability of events.")
|
||||
print("The functions are:")
|
||||
print("i(A, B) - The intersection of A and B")
|
||||
print("u(A, B) - The union of A and B")
|
||||
print("g(A, B) - The conditional probability of A given B")
|
||||
print("n(A) - The negation of A")
|
||||
print("i(A, B)")
|
||||
print("u(A, B)")
|
||||
print("g(A, B)")
|
||||
print("n(A)")
|
||||
|
105
netcentric.py
Normal file
105
netcentric.py
Normal file
@ -0,0 +1,105 @@
|
||||
# Calculate internet checksum for any arbitrary length variable amount of binary numbers
|
||||
def checksum(*args):
|
||||
length = len(bin(args[0])) - 2
|
||||
result = 0
|
||||
for arg in args:
|
||||
result += arg
|
||||
if result > (2 ** length) - 1:
|
||||
result = (result & ((2 ** length) - 1)) + 1
|
||||
return result ^ ((2 ** length) - 1)
|
||||
|
||||
|
||||
def e2e_delay(P, L, N, R):
|
||||
# P = propagation speed
|
||||
# L = packet length
|
||||
# N = number of packets
|
||||
# R = transmission rate
|
||||
return (P - 1) * (L / R) + N * (L / R)
|
||||
|
||||
|
||||
def estimate_e2e_delay(PS, T):
|
||||
# PS = packet size
|
||||
# T = Throughput
|
||||
return PS / T
|
||||
|
||||
|
||||
def trans_delay(L, R):
|
||||
# L = packet length
|
||||
# R = transmission rate
|
||||
return L / R
|
||||
|
||||
|
||||
def prop_delay(P, L):
|
||||
# P = propagation speed
|
||||
# L = packet length
|
||||
return P * L
|
||||
|
||||
|
||||
def traffic_intensity(L, pps, R):
|
||||
# L = packet length
|
||||
# pps = packets per second
|
||||
# R = transmission rate
|
||||
return (L * pps) / R
|
||||
|
||||
|
||||
def cs_time(N, F, U):
|
||||
# N = Number of copies
|
||||
# F = File size
|
||||
# U = Server upload rate
|
||||
return (N * F) / U
|
||||
|
||||
|
||||
def cs_time_n_clients(N, F, U, D):
|
||||
# N = Number of copies
|
||||
# F = File size
|
||||
# U = Server upload rate
|
||||
# D = Client download rate
|
||||
return max(cs_time(N, F, U), F / D)
|
||||
|
||||
|
||||
def p2p_time(N, F, U, CD, D):
|
||||
# N = Number of copies
|
||||
# F = File size
|
||||
# U = Server upload rate
|
||||
# CU = Client upload rate
|
||||
# D = Client download rate
|
||||
return max((F / U), (N * F) / (U + (N * CD)), F / D)
|
||||
|
||||
|
||||
def utilisation(L, R, RTT):
|
||||
# L = packet length
|
||||
# R = transmission rate
|
||||
# RTT = round trip time
|
||||
return (L / R) / (L / R + RTT)
|
||||
|
||||
|
||||
def utilisation_pipeline(L, R, RTT, N):
|
||||
# L = packet length
|
||||
# R = transmission rate
|
||||
# RTT = round trip time
|
||||
# N = window size
|
||||
return N / (1 + (RTT / (L / R)))
|
||||
|
||||
|
||||
def print_byte_tables():
|
||||
print("Byte Conversion Table")
|
||||
print("1 B = 8 bits")
|
||||
print("kB = 1024 bytes")
|
||||
print("MB = 1024 kB")
|
||||
print("GB = 1024 MB")
|
||||
print("TB = 1024 GB")
|
||||
|
||||
|
||||
def man():
|
||||
print("checksum(0b, 0b,)")
|
||||
print("e2e_delay(P, L, N, R)")
|
||||
print("estimate_e2e_delay(PS, T)")
|
||||
print("trans_delay(L, R)")
|
||||
print("prop_delay(P, L)")
|
||||
print("traffic_intensity(L, pps, R)")
|
||||
print("cs_time(N, F, U)")
|
||||
print("cs_time_n_clients(N, F, U, D)")
|
||||
print("p2p_time(N, F, U, CD, D)")
|
||||
print("utilisation(L, R, RTT)")
|
||||
print("utilisation_pipeline(L, R, RTT, N)")
|
||||
print("print_byte_tables()")
|
Reference in New Issue
Block a user